39 research outputs found
Rapid Sampling of Molecular Motions with Prior Information Constraints
Proteins are active, flexible machines that perform a range of different
functions. Innovative experimental approaches may now provide limited partial
information about conformational changes along motion pathways of proteins.
There is therefore a need for computational approaches that can efficiently
incorporate prior information into motion prediction schemes. In this paper, we
present PathRover, a general setup designed for the integration
of prior information into the motion planning algorithm of rapidly exploring
random trees (RRT). Each suggested motion pathway comprises a sequence of
low-energy clash-free conformations that satisfy an arbitrary number of prior
information constraints. These constraints can be derived from experimental data
or from expert intuition about the motion. The incorporation of prior
information is very straightforward and significantly narrows down the vast
search in the typically high-dimensional conformational space, leading to
dramatic reduction in running time. To allow the use of state-of-the-art energy
functions and conformational sampling, we have integrated this framework into
Rosetta, an accurate protocol for diverse types of structural modeling. The
suggested framework can serve as an effective complementary tool for molecular
dynamics, Normal Mode Analysis, and other prevalent techniques for predicting
motion in proteins. We applied our framework to three different model systems.
We show that a limited set of experimentally motivated constraints may
effectively bias the simulations toward diverse predicates in an outright
fashion, from distance constraints to enforcement of loop closure. In
particular, our analysis sheds light on mechanisms of protein domain swapping
and on the role of different residues in the motion