1,429 research outputs found

    Major Surge Activity of Super-Active Region NOAA 10484

    Full text link
    We observed two surges in H-alpha from the super-active region NOAA 10484. The first surge was associated with an SF/C4.3 class flare. The second one was a major surge associated with a SF/C3.9 flare. This surge was also observed with SOHO/EIT in 195 angstrom and NoRh in 17 GHz, and showed similar evolution in these wavelengths. The major surge had an ejective funnel-shaped spray structure with fast expansion in linear (about 1.2 x 10^5 km) and angular (about 65 deg) size during its maximum phase. The mass motion of the surge was along open magnetic field lines, with average velocity about 100 km/s. The de-twisting motion of the surge reveals relaxation of sheared and twisted magnetic flux. The SOHO/MDI magnetograms reveal that the surges occurred at the site of companion sunspots where positive flux emerged, converged, and canceled against surrounding field of opposite polarity. Our observations support magnetic reconnection models for the surges and jets.Comment: 4 pages, 3 figures; To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Series, Springer-Verlag, Heidelberg, Berlin, 200

    Low-temperature metamagnetic states in single crystal TbNi2B2C studied by torque magnetometry

    Get PDF
    Metamagnetic transitions in single crystalTbNi2B2C have been studied at 1.9 K with a Quantum Design torque magnetometer. The critical fields for the transitions depend strongly on the angle between the applied field and the easy axis [100]. Torque measurements have been made while changing the angular direction of the magnetic field (parallel to basal tetragonal ab-planes) at fixed field magnitude and while changing the field magnitude at fixed angular direction over a wide angular range (more than two quadrants). Torque magnetometry (sensitive only to the component of magnetization perpendicular to the field) indicates not only a different sequence of metamagnetic phases for fields near the easy axis from those near the hard axis, but also the different natures of a principal metamagnetic phase near the hard axis. Comparison of the results with longitudinal magnetization measurements is presented

    Giant microwave absorption in fine powders of superconductors

    Get PDF
    Enhanced microwave absorption, larger than that in the normal state, is observed in fine grains of type-II superconductors (MgB2_2 and K3_3C60_{60}) for magnetic fields as small as a few %\% of the upper critical field. The effect is predicted by the theory of vortex motion in type-II superconductors, however its direct observation has been elusive due to skin-depth limitations; conventional microwave absorption studies employ larger samples where the microwave magnetic field exclusion significantly lowers the absorption. We show that the enhancement is observable in grains smaller than the penetration depth. A quantitative analysis on K3_3C60_{60} in the framework of the Coffey--Clem (CC) theory explains well the temperature dependence of the microwave absorption and also allows to determine the vortex pinning force constant

    Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge

    Get PDF
    We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid Com

    Magnetic pair breaking in HoNi2B2C

    Get PDF
    Neutron-diffraction techniques have been used to study the interplay between superconductivity and magnetism in HoNi2B2C (Tc=8 K). The experimental results, obtained on single crystals, show that below approximately 4.7 K, this compound is in a simple antiferromagnetic state that coexists with superconductivity. Between approximately 4.7 and 6 K, an incommensurate modulated magnetic structure has been found. This observation strongly suggests that pair breaking associated with this incommensurate magnetic structure is responsible for the deep minimum in Hc2 and the near-reentrant behavior observed in this compound at approximately 5 K

    Systematic effects of carbon doping on the superconducting properties of Mg(B1x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with HcH\perp c

    Torque magnetometry studies of metamagnetic transitions in single-crystal HoNi_{2}B_{2}C and ErNi_{2}B_{2}C at T\approx 1.9 K

    Full text link
    The metamagnetic transitions in single-crystal rare-earth nickel borocarbide HoNi_{2}B_{2}C and ErNi_{2}B_{2}C have been studied at 1.9 K with a Quantum Design torque magnetometer. The critical fields of the transitions depend crucially on the angle between applied field and the easy axis [110] for HoNi_2B_2C and [100] for ErNi_2B_2C. Torque measurements have been made while changing angular direction of the magnetic field (parallel to basal tetragonal ab-planes) in a wide angular range (more than two quadrants). The results are used not only to check and refine the angular diagram for metamagnetic transitions in these compounnds, but also to find new features of the metamagnetic states. Among new results for the Ho borocarbide are the influence of a multidomain antiferromagnetic state, and ``frustrated'' behavior of the magnetic system for field directions close to the hard axis [100]. Torque measurements of the Er borocarbide clearly show that the sequence of metamagnetic transitions with increasing field (and the corresponding number of metamagnetic states) depends on the angular direction of the magnetic field relative to the easy axis.Comment: 3pages (4 figs. incl.) reported at 50th Magnetism and Magnetic Materials Conference, San Jose, CA, USA, 200

    Phenomenological Theory of Superconductivity and Magnetism in Ho1x_{1-x}Dyx_xNi2_2B2_2C

    Full text link
    The coexistence of the superconductivity and magnetism in the Ho1x_{1-x}Dyx_xNi2_2B2_2C is studied by using Ginzburg-Landau theory. This alloy shows the coexistence and complex interplay of superconducting and magnetic order. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe phenomenologically the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of TcT_c in Ho1x_{1-x}Dyx_xNi2_2B2_2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.Comment: 4 pages, 3 figures, REVTeX, submitted to PR

    Point-contact-spectroscopy evidence of quasi-particle interactions in RNi2B2C (R=Ho, Y)

    Get PDF
    The point-contact (PC) d2V/dI2-spectra of HoNi2B2C and YNl2B2C reveal structure at applied voltages corresponding to the phonon frequencies. At about 4 meV a maximum is observed in the phonondensity of states by analogy to the soft-phonon structure in neutron scattering experiments for LuNi2B2C [P. Dervenagas et al., Phys. Rev. B52, R9839 (1995)]and YNl2B2C [H. Kawano et al., Czech. J. Phys. 46, S2-825 (1996), Phys. Rev. Lett.77, 4628 (1996)]. In the Ho compound the low-energy phonon peak is suppressed by an applied magnetic field in an anisotropic way, pointing to an interaction between the phonons and the magnetic systems. Surprisingly, in the nonmagnetic Y compound the 4-meV peak is also suppressed by a magnetic field. In the Ho-compound contacts which show the 〈quasi-thermal〉 behavior, the detailed magnetic-field and temperature dependences of PC spectra suggest that the magnetic order is destroyed due to the coupled phonon-magnon subsystem which is driven out of equilibrium by electrons that pass through the contact, by analogy with the nonequilibrium phonon-induced destruction of the superconducting state in point contacts [I. K. Yanson et al., JETP Lett. 45, 543 (1987)]. The PC electron-phonon interaction(EPI) spectral functions are reconstructed and the estimates for the λ-parameter yield the values of the order of 0.1. Comparison with PC EPI spectra of nonsuperconducting and nonmagnetic LaNi2B2C. [I. K. Yanson et al., Phys. Rev. Lett. 78, 935 (1997)], as well as the comparative study of PC EPI and Andreev-reflection spectra for various contacts with superconducting Ho and Y compounds suggest that the low-energy part of the electron-quasi-particle interaction spectral function is responsible for the Cooper pairing in these materials
    corecore