75 research outputs found

    2 and 3-dimensional Hamiltonians with Shape Invariance Symmetry

    Full text link
    Via a special dimensional reduction, that is, Fourier transforming over one of the coordinates of Casimir operator of su(2) Lie algebra and 4-oscillator Hamiltonian, we have obtained 2 and 3 dimensional Hamiltonian with shape invariance symmetry. Using this symmetry we have obtained their eigenspectrum. In the mean time we show equivalence of shape invariance symmetry and Lie algebraic symmetry of these Hamiltonians.Comment: 24 Page

    Hierarchy of random deterministic chaotic maps with an invariant measure

    Full text link
    Hierarchy of one and many-parameter families of random trigonometric chaotic maps and one-parameter random elliptic chaotic maps of cn\bf{cn} type with an invariant measure have been introduced. Using the invariant measure (Sinai-Ruelle-Bowen measure), the Kolmogrov-Sinai entropy of the random chaotic maps have been calculated analytically, where the numerical simulations support the resultsComment: 11 pages, Late

    Generating GHZ state in 2m-qubit spin network

    Full text link
    We consider a pure 2m-qubit initial state to evolve under a particular quantum me- chanical spin Hamiltonian, which can be written in terms of the adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques such as spectral dis- tribution and stratification associated with the graphs, employed in [1, 2], a maximally entangled GHZ state is generated between the antipodes of the network. In fact, an explicit formula is given for the suitable coupling strengths of the hamiltonian, so that a maximally entangled state can be generated between antipodes of the network. By using some known multipartite entanglement measures, the amount of the entanglement of the final evolved state is calculated, and finally two examples of four qubit and six qubit states are considered in details.Comment: 22 page

    Evaluation of effective resistances in pseudo-distance-regular resistor networks

    Full text link
    In Refs.[1] and [2], calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on the stratification of the network and Stieltjes function associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks called pseudo-distance-regular networks [21] or QD type networks \cite{obata} is investigated, where we use the stratification of these networks and show that the effective resistances between a given node such as α\alpha and all of the nodes β\beta belonging to the same stratum with respect to α\alpha (Rαβ(m)R_{\alpha\beta^{(m)}}, β\beta belonging to the mm-th stratum with respect to the α\alpha) are the same. Then, based on the spectral techniques, an analytical formula for effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} such that Lαα1=Lββ1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} (those nodes α\alpha, β\beta of the network such that the network is symmetric with respect to them) is given in terms of the first and second orthogonal polynomials associated with the network, where L1L^{-1} is the pseudo-inverse of the Laplacian of the network. From the fact that in distance-regular networks, Lαα1=Lββ1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} is satisfied for all nodes α,β\alpha,\beta of the network, the effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} for m=1,2,...,dm=1,2,...,d (dd is diameter of the network which is the same as the number of strata) are calculated directly, by using the given formula.Comment: 30 pages, 7 figure

    Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory

    Full text link
    The method of the quantum probability theory only requires simple structural data of graph and allows us to avoid a heavy combinational argument often necessary to obtain full description of spectrum of the adjacency matrix. In the present paper, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the quantum probability theory, we investigate quantum central limit theorem for continuous-time quantum walks on odd graphs.Comment: 19 page, 1 figure

    Tunneling in Λ\Lambda Decaying Cosmologies and the Cosmological Constant Problem

    Full text link
    The tunneling rate, with exact prefactor, is calculated to first order in \hbar for an empty closed Friedmann-Robertson-Walker (FRW) universe with decaying cosmological term ΛRm\Lambda \sim R^{-m} (RR is the scale factor and mm is a parameter 0m20\leq m \leq 2). This model is equivalent to a cosmology with the equation of state pχ=(m/31)ρχp_{\chi}=(m/3 -1)\rho_{\chi}. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that the highest tunneling rate occurs for m=2m=2 corresponding to the cosmic string matter universe. The obtained most probable cosmological term, like one obtained by Strominger, accounts for a possible solution to the cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including some physical mechanisms supporting the time variation of the cosmological constant, added references for the section 3. Accepted to be published in Phys. Rev.
    corecore