35 research outputs found
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed
Engineering model system study for a regenerative fuel cell: Study report
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined
Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment
Homologous gene shuffling between DNA promotes genetic diversity and is an
important pathway for DNA repair. For this to occur, homologous genes need to
find and recognize each other. However, despite its central role in homologous
recombination, the mechanism of homology recognition is still an unsolved
puzzle. While specific proteins are known to play a role at later stages of
recombination, an initial coarse grained recognition step has been proposed.
This relies on the sequence dependence of the DNA structural parameters, such
as twist and rise, mediated by intermolecular interactions, in particular
electrostatic ones. In this proposed mechanism, sequences having the same base
pair text, or are homologous, have lower interaction energy than those
sequences with uncorrelated base pair texts; the difference termed the
recognition energy. Here, we probe how the recognition energy changes when one
DNA fragment slides past another, and consider, for the first time, homologous
sequences in antiparallel alignment. This dependence on sliding was termed the
recognition well. We find that there is recognition well for anti-parallel,
homologous DNA tracts, but only a very shallow one, so that their interaction
will differ little from the interaction between two nonhomologous tracts. This
fact may be utilized in single molecule experiments specially targeted to test
the theory. As well as this, we test previous theoretical approximations in
calculating the recognition well for parallel molecules against MC simulations,
and consider more rigorously the optimization of the orientations of the
fragments about their long axes. The more rigorous treatment affects the
recognition energy a little, when the molecules are considered rigid. However
when torsional flexibility of the DNA molecules is introduced, we find
excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures
in main text, 3 figures in supplmental. To be submitted to Journa
Stakeholder perspectives on shale gas fracking: A Q-method study of environmental discourses
The rapid expansion of shale gas exploration worldwide is a significant source of environmental controversy. Successful shale gas policymaking is dependent upon a clear understanding of the dynamics of competing stakeholder perspectives on these issues, and so methods are needed to delineate the areas of agreement and conflict that emerge. This empirical study, based in the United Kingdom, examines emergent perspectives on a range of environmental, health and socio-economic impacts associated with shale gas fracking using Q- methodology: a combined qualitative-quantitative approach. The analysis reveals three typologies of perspectives amongst key industry, civil society and non-affiliated citizen stakeholders; subsequently contextualised in relation to Dryzek’s typology of environmental discourses. These are labelled A) “Don’t trust the fossil fuels industry: campaign for renewables” (mediating between sustainable development and democratic pragmatism discourses); B) “Shale gas is a bridge fuel: economic growth and environmental scepticism” (mediating between economic rationalism and ecological modernisation discourses); and C) “Take place protective action and legislate in the public interest” (reflecting a discourse of administrative rationalism). The implications of these competing discourses for nascent shale gas policy in the UK are discussed in light of recent Government public consultation on changes to national planning policy
Mucinous cystic neoplasms of the mesentery: a case report and review of the literature
<p>Abstract</p> <p>Background</p> <p>Mucinous cystic neoplasms arise in the ovary and various extra-ovarian sites. While their pathogenesis remains conjectural, their similarities suggest a common pathway of development. There have been rare reports involving the mesentery as a primary tumour site.</p> <p>Case presentation</p> <p>A cystic mass of uncertain origin was demonstrated radiologically in a 22 year old female with chronic abdominal pain. At laparotomy, the mass was fixed within the colonic mesentery. Histology demonstrated a benign mucinous cystadenoma.</p> <p>Methods and results</p> <p>We review the literature on mucinous cystic neoplasms of the mesentery and report on the pathogenesis, biologic behavior, diagnosis and treatment of similar extra-ovarian tumors. We propose an updated classification of mesenteric cysts and cystic tumors.</p> <p>Conclusion</p> <p>Mucinous cystic neoplasms of the mesentery present almost exclusively in women and must be considered in the differential diagnosis of mesenteric tumors. Only full histological examination of a mucinous cystic neoplasm can exclude a borderline or malignant component. An updated classification of mesenteric cysts and cystic tumors is proposed.</p
Rethinking place-making: aligning placeness factors with perceived urban design qualities (PUDQs) to improve the built environment in historical district
Understanding the concept of place is critically important for urban design and place-making practice, and this research attempted to investigate the pathways by which perceived urban design qualities (PUDQs) influence placeness factors in the Chinese context. Twelve hypotheses were developed and combined in a structural equation model for validation. The Tanhualin historical district in Wuhan, China was selected for the analysis. As a result, place attachment was verified as a critical bridge factor that mediated the influence of PUDQs on place satisfaction. Among the five selected PUDQs, walkability and space quality were revealed as the most influential factors associated with place attachment and place satisfaction. Accessibility was actually indirectly beneficial to place-making via the mediation of walkability. Corresponding implications and strategies were discussed to maintain the sense of place for historic districts
Environmental Worldview, Place Attachment, and Awareness of Environmental Impacts in a Marine Environment
Place attachment provides insight on why and to what extent individuals value a particular setting. Most investigations involving place attachment and environmental attitudes have been conducted in terrestrial settings; little work has addressed proenvironmental behavior in marine settings. The purpose of the current investigation was to extend Stern et al.'s work, which indicates that individuals' environmental worldviews (EWVs) influence their attitudes toward anthropogenic impacts on the environment. We hypothesized a model wherein place attachment partially mediates the relationship between recreational visitors' EWV and their awareness of consequences of negative impacts on Australia's Great Barrier Reef. We then compared this model with competing models. Our results suggest that place attachment is a useful addition to studies that use Stern et al.'s value-belief-norm model