68,484 research outputs found
Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor
A model for spin-charge separated superconductivity in two dimensions is
introduced where the phases of the spinon and holon order parameters couple
gauge-invariantly to a statistical gauge-field representing chiral
spin-fluctuations. The model is analyzed in the continuum limit and in the
low-temperature limit. In both cases we find that physical electronic phase
correlations show a superconducting-normal phase transition of the
Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations
are found to be strictly gapless. The normal-to-superconductor phase boundary
for this model is also obtained as a function of carrier density, where we find
that its shape compares favorably with that of the experimentally observed
phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-
Crosstalk Correction in Atomic Force Microscopy
Commercial atomic force microscopes usually use a four-segmented photodiode
to detect the motion of the cantilever via laser beam deflection. This read-out
technique enables to measure bending and torsion of the cantilever separately.
A slight angle between the orientation of the photodiode and the plane of the
readout beam, however, causes false signals in both readout channels, so-called
crosstalk, that may lead to misinterpretation of the acquired data. We
demonstrate this fault with images recorded in contact mode on ferroelectric
crystals and present an electronic circuit to compensate for it, thereby
enabling crosstalk-free imaging
Disorder-induced double resonant Raman process in graphene
An analytical study is presented of the double resonant Raman scattering
process in graphene, responsible for the D and D features in the
Raman spectra. This work yields analytical expressions for the D and
D integrated Raman intensities that explicitly show the dependencies
on laser energy, defect concentration, and electronic lifetime. Good agreement
is obtained between the analytical results and experimental measurements on
samples with increasing defect concentrations and at various laser excitation
energies. The use of Raman spectroscopy to identify the nature of defects is
discussed. Comparison between the models for the edge-induced and the
disorder-induced D band intensity suggests that edges or grain boundaries can
be distinguished from disorder by the different dependence of their Raman
intensity on laser excitation energy. Similarly, the type of disorder can
potentially be identified not only by the intensity ratio
, but also by its laser energy
dependence. Also discussed is a quantitative analysis of quantum interference
effects of the graphene wavefunctions, which determine the most important
phonon wavevectors and scattering processes responsible for the D and
D bands.Comment: 10 pages, 4 figure
Mass gap in the critical gravitational collapse of a kink
We study the gravitational collapse of a kink within spherical symmetry and
the characteristic formulation of General Relativity. We explore some expected
but elusive gravitational collapse issues which have not been studied before in
detail, finding new features. The numerical one-parametric solution and the
structure of the spacetime are calculated using finite differences, Galerkin
collocation techniques, and some scripting for automated grid coverage. We
study the threshold of black hole formation and confirm a mass gap in the phase
transition. In the supercritical case we find a mass scaling power law
,
with independent of the initial data for the cases
considered, and , and each depending on the initial
datum. The spacetime has a self-similar structure with a period of
. In the subcritical case the Bondi mass at null infinity
decays in cascade with interval as expected.Comment: 5 pages, 5 figures; to appear in Physical Review
Fermion Analogy for Layered Superconducting Films in Parallel Magnetic Field
The equivalence between the Lawrence-Doniach model for films of extreme
type-II layered superconductors and a generalization of the back-scattering
model for spin-1/2 electrons in one dimension is demonstrated. This fermion
analogy is then exploited to obtain an anomalous tail for
the parallel equilibrium magnetization of the minimal double layer case in the
limit of high parallel magnetic fields for temperatures in the
critical regime.Comment: 11 pages of plain TeX, 1 postscript figur
Cooper Pair Formation in U(1) Gauge Theory of High Temperature Superconductivity
We study the two-dimensional spin-charge separated Ginzburg-Landau theory
containing U(1) gauge interactions as a semi-phenomenological model describing
fluctuating condensates in high temperature superconductivity. Transforming the
original GL action, we abstract the effective action of Cooper pair.
Especially, we clarify how Cooper pair correlation evolves in the normal state
from the point of view of spin-charge separation. Furthermore, we point out how
Cooper pair couples to gauge field in a gauge-invariant way, stressing the
insensitivity of Cooper pair to infrared gauge field fluctuation.Comment: 4 pages, 5 figures included, submitted to J. Phys. Soc. Jp
The Role of Nonlinear Dynamics in Quantitative Atomic Force Microscopy
Various methods of force measurement with the Atomic Force Microscope (AFM)
are compared for their ability to accurately determine the tip-surface force
from analysis of the nonlinear cantilever motion. It is explained how
intermodulation, or the frequency mixing of multiple drive tones by the
nonlinear tip-surface force, can be used to concentrate the nonlinear motion in
a narrow band of frequency near the cantilevers fundamental resonance, where
accuracy and sensitivity of force measurement are greatest. Two different
methods for reconstructing tip-surface forces from intermodulation spectra are
explained. The reconstruction of both conservative and dissipative tip-surface
interactions from intermodulation spectra are demonstrated on simulated data.Comment: 25 pages (preprint, double space) 7 figure
- …
