21,051 research outputs found

    Kinematic Self-Similar Cylindrically Symmetric Solutions

    Full text link
    This paper is devoted to find out cylindrically symmetric kinematic self-similar perfect fluid and dust solutions. We study the cylindrically symmetric solutions which admit kinematic self-similar vectors of second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the parallel case gives contradiction both in perfect fluid and dust cases. The orthogonal perfect fluid case yields a vacuum solution while the orthogonal dust case gives contradiction. It is worth mentioning that the tilted case provides solution both for the perfect as well as dust cases.Comment: 22 pages, accepted for publication in Int. J. of Mod. Phys.

    Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes

    Get PDF
    The recent discovery of critical phenomena arising in gravitational collapse near the threshold of black hole formation is used to estimate the initial mass function of primordial black holes (PBHs). It is argued that the universal scaling relation between black hole mass and initial perturbation found for a variety of collapsing space-times also applies to PBH formation, indicating the possibility of the formation of PBHs with masses much smaller than one horizon mass. Owing to the natural fine-tuning of initial conditions by the exponential decline of the probability distribution for primordial density fluctuations, sub-horizon mass PBHs are expected to form at all epochs. This result suggests that the constraints on the primordial fluctuation spectrum based on the abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let

    Evolution of primordial black holes in Jordan-Brans-Dicke cosmology

    Full text link
    We consider the evolution of primordial black holes in a generalyzed Jordan-Brans-Dicke cosmological model where both the Brans-Dicke scalar field and its coupling to gravity are dynamical functions determined from the evolution equations. The evaporation rate for the black holes changes compared to that in standard cosmology. We show that accretion of radiation can proceed effectively in the radiation dominated era. The black hole lifetime shortens for low initial mass, but increases for high initial mass, and is thus considerably modified compared to the case of standard cosmology. We derive a cut-off value for the initial black hole mass, below which primordial black holes evaporate out in the radiation dominated era, and above which they survive beyond the present era.Comment: 5 pages, Latex; uses MNRAS stylefiles; minor changes; accepted for publication in MNRA

    Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem

    Full text link
    We propose a scenario in which the cosmological domain wall and monopole problems are solved without any fine tuning of the initial conditions or parameters in the Lagrangian of an underlying filed theory. In this scenario domain walls sweep out (unwind) the monopoles from the early universe, then the fast primordial black holes perforate the domain walls, change their topology and destroy them. We find further that the (old vacuum) energy density released from the domain walls could alleviate but not solve the cosmological flatness problem.Comment: References added; Published in Phys. Rev.

    Self-similar cosmological solutions with dark energy. II: black holes, naked singularities and wormholes

    Full text link
    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ1)μp=(\gamma -1)\mu with 0<γ<2/30<\gamma<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all non-traversable because of the absence of a past null infinity.Comment: 12 pages, 19 figures, 1 table, final version to appear in Physical Review
    corecore