3,436 research outputs found
PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT
We propose two viable scenarios explaining the recent observations on cosmic
positron excess. In both scenarios, the present relic density in the Universe
is assumed to be still supported by thermally produced WIMP or LSP (\chi). One
of the scenarios is based on two dark matter (DM) components (\chi,X) scenario,
and the other is on SO(10) SUSY GUT. In the two DM components scenario,
extremely small amount of non-thermally produced meta-stable DM component
[O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10)
model, extremely small R-parity violation for LSP decay to e^\pm is naturally
achieved with a non-zero VEV of the superpartner of one right-handed neutrino
(\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201
De ate a furor : la secularización de la intervención divina en el Hercvles fvrens de Séneca
La presente comunicación tiene como objeto indagar en la secularización del concepto de ate, entendido como la exaltación divina del héroe trágico, y su conversión en furor, en la tragedia Hercules furens, del filósofo latino Lucio Anneo Seneca. Para entender la especificidad de la intervención divina en el Hercules, se analiza la expresión de este fenómeno en el Áyax sofocleo y la vecindad que este último héroe demuestra en relación con los personajes homéricos, para, finalmente, concluir las diferencias funcionales que la emergencia de los dioses -y, en particular, el mandato divino- tiene en la estructuración dramática de la tragedia senecana. Con la remisión tanto a Homero como a Sófocles y Eurípides se pretende dar somera cuenta del tránsito que convierte un problema formal y divino, en uno eventual y humano
Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles
We report a systematic study on the structural and magnetic properties of
Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between to nm,
prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large
magneto-crystalline anisotropy of the synthesized particles resulted in high
blocking temperatures ( K \leqq K for d nm ) and large coercive fields ( kA/m for K).
The smallest particles ( nm) revealed the existence of a magnetically
hard, spin-disordered surface. The thermal dependence of static and dynamic
magnetic properties of the whole series of samples could be explained within
the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc
corrections, by including the thermal dependence of the magnetocrystalline
anisotropy constant through the empirical Br\"{u}khatov-Kirensky
relation. This approach provided values very similar to the bulk
material from either static or dynamic magnetic measurements, as well as
realistic values for the response times ( s).
Deviations from the bulk anisotropy values found for the smallest particles
could be qualitatively explained based on Zener\'{}s relation between
and M(T)
Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake
Nanoparticles (NPs) engineered for biomedical applications are meant to be in
contact with protein-rich physiological fluids. These proteins are usually
adsorbed onto the NP surface, forming a swaddling layer called protein corona
that influences cell internalization. We present a study on protein adsorption
onto different magnetic NPs (MNPs) when immersed in cell culture medium, and
how these changes affect the cellular uptake. Two colloids with magnetite cores
of 25 nm, same hydrodynamic size and opposite surface charge were in situ
coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative
poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture
medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size
increase. After 24 h of incubation large MNP-protein aggregates with
hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were
observed. Each cluster contained an estimated number of magnetic cores between
450 and 1000, indicating the formation of large aggregates with a "plum
pudding" structure of MNPs embedded into a protein network of negative surface
charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are
incorporated in much larger amounts than the PAA-MNPs units. Quantitative
analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added
PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less
than 50 percent. The final cellular distribution showed also notable
differences regarding partial attachment to the cell membrane. These results
highlight the need to characterize the final properties of MNPs after protein
adsorption in biological media, and demonstrate the impact of these properties
on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
Genomic abundance is not predictive of tandem repeat localization in grass genomes.
Highly repetitive regions have historically posed a challenge when investigating sequence variation and content. High-throughput sequencing has enabled researchers to use whole-genome shotgun sequencing to estimate the abundance of repetitive sequence, and these methodologies have been recently applied to centromeres. Previous research has investigated variation in centromere repeats across eukaryotes, positing that the highest abundance tandem repeat in a genome is often the centromeric repeat. To test this assumption, we used shotgun sequencing and a bioinformatic pipeline to identify common tandem repeats across a number of grass species. We find that de novo assembly and subsequent abundance ranking of repeats can successfully identify tandem repeats with homology to known tandem repeats. Fluorescent in-situ hybridization shows that de novo assembly and ranking of repeats from non-model taxa identifies chromosome domains rich in tandem repeats both near pericentromeres and elsewhere in the genome
Real-Time Vector Automata
We study the computational power of real-time finite automata that have been
augmented with a vector of dimension k, and programmed to multiply this vector
at each step by an appropriately selected matrix. Only one entry
of the vector can be tested for equality to 1 at any time. Classes of languages
recognized by deterministic, nondeterministic, and "blind" versions of these
machines are studied and compared with each other, and the associated classes
for multicounter automata, automata with multiplication, and generalized finite
automata.Comment: 14 page
- …