45 research outputs found

    Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    Get PDF
    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.Chemistry and Chemical Biolog

    Low scale multiple array synthesis and DNA hybridization of peptide nucleic acids

    No full text

    Another Realization of Aqueous Computing with Peptide Nucleic Acid

    No full text

    STRUCTURE-ACTIVITY STUDIES OF THE BINDING OF MODIFIED PEPTIDE NUCLEIC-ACIDS (PNAS) TO DNA

    No full text
    Peptide nucleic acid (PNA) oligomers where one of the repeating backbone units is extended with a methylene group to either N-(2-aminoethyl)-beta-alanine or N-(3-aminopropyl)glycine were prepared. Alternatively, the linker to the nucleobase was extended from methylenecarbonyl to ethylenecarbonyl. The thermal stability of the hybrids between these PNA oligomers and complementary DNA oligonucleotides was significantly lower than that of the corresponding complexes involving unmodified PNA. However, the sequence selectivity was retained. Thymidyl decamers with all N-(2-aminoethyl)-beta-alanine or N-(3-aminopropyl)glycine backbones were prepared and shown to be unable to hybridize to the complementary (dA)(10) oligonucleotides, whereas a PNA decamer containing only ethylenecarbonyl linkers between the nucleobases and the N-(2-aminoethyl)glycine backbone showed weak but sequence-specific affinity for complementary DNA. All hybrids involving homopyrimidine PNA oligomers exhibited (PNA)(2)/DNA stoichiometry, whereas mixed-sequence PNA oligomers formed PNA/DNA duplexes. The preferred binding direction between the modified PNA and DNA in the duplex motifs was antiparallel, as previously reported for complexes involving unmodified PNA
    corecore