363 research outputs found

    Positive Quality of Life Factors Identified from EFNEP Participant Stories

    Get PDF
    EFNEP collects stories from participants and educators regarding the program\u27s impacts. The objective of the study reported here was to qualitatively analyze these stories in the context of quality of life. Researchers analyzed 1,057 stories by identifying key words and developing codes to best describe the information. After analysis, codes were grouped into themes. The research demonstrated that EFNEP is perceived to have positively affected the quality of life of participants. These results not only confirm broader EFNEP benefits, but suggest an additional variable (quality of life) to consider as a measureable outcome

    Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021

    Full text link
    We present a detailed Chandra, XMM-Newton, VLA and HST analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z=0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these AGN-driven outflows is (22+/-9)*10^44 erg/s, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbours older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r=65kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10^10M_Sun or a rapidly spinning black hole is favoured to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.Comment: Accepted for publication to ApJ (minor corrections), 16 pages, 16 figures, 5 tables. Full resolution at http://www.stanford.edu/~juliehl/M1532

    Deep H{\alpha} Observations of NGC 253: a Very Extended and Possibly Declining Rotation Curve?

    Full text link
    This study presents a deep H{\alpha} kinematical analysis of the Sculptor Group galaxy NGC253. The Fabry-Perot data were taken with the 36-cm Marseille Telescope in La Silla, Chile, using an EMCCD detector. Typical emission measures of ~0.1 cm^-6 pc are reached. The observations allow the detection of the Diffuse Ionized Gas component through [N II] emission at very large radii of 11.5', 12.8' and 19.0', on the receding side of the galaxy. No H{\alpha} emission is observed at radii larger than the neutral component (11.5'). The very extended rotation curve confirms previous results and shows signs of a significant decline, on the order of 30 per cent vmax . Using the rotation data, mass models are constructed with and without the outer [N II] data points, and similar results are found. The declining part of the rotation curve is very well modeled, and seems to be truly declining.Comment: Accepted for publication in MNRAS. 16 pages, 10 figures, 4 table

    The Evolution of the Intracluster Medium Metallicity in Sunyaev-Zel'dovich-Selected Galaxy Clusters at 0 < z < 1.5

    Full text link
    We present the results of an X-ray spectral analysis of 153 galaxy clusters observed with the Chandra, XMM-Newton, and Suzaku space telescopes. These clusters, which span 0 < z < 1.5, were drawn from a larger, mass-selected sample of galaxy clusters discovered in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. With a total combined exposure time of 9.1 Ms, these data yield the strongest constraints to date on the evolution of the metal content of the intracluster medium (ICM). We find no evidence for strong evolution in the global (r<R500) ICM metallicity (dZ/dz = -0.06 +/- 0.04 Zsun), with a mean value at z=0.6 of = 0.23 +/- 0.01 Zsun and a scatter of 0.08 +/- 0.01 Zsun. These results imply that >60% of the metals in the ICM were already in place at z=1 (at 95% confidence), consistent with the picture of an early (z>1) enrichment. We find, in agreement with previous works, a significantly higher mean value for the metallicity in the centers of cool core clusters versus non-cool core clusters. We find weak evidence for evolution in the central metallicity of cool core clusters (dZ/dz = -0.21 +/- 0.11 Zsun), which is sufficient to account for this enhanced central metallicity over the past ~10 Gyr. We find no evidence for metallicity evolution outside of the core (dZ/dz = -0.03 +/- 0.06 Zsun), and no significant difference in the core-excised metallicity between cool core and non-cool core clusters. This suggests that strong radio-mode AGN feedback does not significantly alter the distribution of metals at r>0.15R500. Given the limitations of current-generation X-ray telescopes in constraining the ICM metallicity at z>1, significant improvements on this work will likely require next-generation X-ray missions.Comment: 11 pages, 8 figures, 2 tables. Submitted to ApJ. Comments welcome

    AGN feedback and iron enrichment in the powerful radio galaxy, 4C+55.16

    Full text link
    We present a detailed X-ray analysis of 4C+55.16, an unusual and interesting radio galaxy, located at the centre of a cool core cluster of galaxies. 4C+55.16 is X-ray bright (L(cluster)~10^45 erg/s), radio powerful, and shows clear signs of interaction with the surrounding intracluster medium. By combining deep Chandra (100 ks) with 1.4 GHz VLA observations, we find evidence of multiple outbursts from the central AGN, providing enough energy to offset cooling of the ICM (P_bubbles=6.7x10^44 erg/s). Furthermore, 4C+55.16 has an unusual intracluster iron distribution showing a plume-like feature rich in Fe L emission that runs along one of the X-ray cavities. The excess of iron associated with the plume is around 10^7M_sol. The metal abundances are consistent with being Solar-like, indicating that both SNIa and SNII contribute to the enrichment. The plume and southern cavity form a region of cool metal-rich gas, and at the edge of this region, there is a clear discontinuity in temperature (from kT~2.5 keV to kT~5.0 keV), metallicity (from ~0.4 solar to 0.8 solar), and surface brightness distribution, consistent with it being caused by a cold front. However, we also suggest that this discontinuity could be caused by cool metal-rich gas being uplifted from the central AGN along one of its X-ray cavities.Comment: 12 pages, 11 figures, 1 table, Accepted to MNRAS (minor revision

    Very Large Array observations of the mini-halo and AGN feedback in the Phoenix cluster

    Get PDF
    (Abridged) The relaxed cool-core Phoenix cluster (SPT-CL J2344-4243) features an extremely strong cooling flow, as well as a mini-halo. Strong star-formation in the brightest cluster galaxy indicates that AGN feedback has been unable to inhibit this cooling flow. We have studied the strong cooling flow in the Phoenix cluster by determining the radio properties of the AGN and its lobes. In addition, we use spatially resolved observations to investigate the origin of the mini-halo. We present new Very Large Array 1-12 GHz observations of the Phoenix cluster which resolve the AGN and its lobes in all four frequency bands, and resolve the mini-halo in L- and S-band. Using our L-band observations, we measure the total flux density of the radio lobes at 1.5 GHz to be 7.6±0.87.6\pm0.8 mJy, and the flux density of the mini-halo to be 8.5±0.98.5\pm0.9 mJy. Using L- and X-band images, we produce the first spectral index maps of the lobes from the AGN and measure the spectral indices of the northern and southern lobes to be −1.35±0.07-1.35\pm0.07 and −1.30±0.12-1.30\pm0.12, respectively. Similarly, using L- and S-band data, we map the spectral index of the mini-halo, and obtain an integrated spectral index of α=−0.95±0.10\alpha=-0.95 \pm 0.10. We find that the mini-halo is most likely formed by turbulent re-acceleration powered by sloshing in the cool core due to a recent merger. In addition, we find that the feedback in the Phoenix cluster is consistent with the picture that stronger cooling flows are to be expected for massive clusters like the Phoenix cluster, as these may feature an underweight supermassive black hole due to their merging history. Strong time variability of the AGN on Myr-timescales may help explain the disconnection between the radio and the X-ray properties of the system. Finally, a small amount of jet precession likely contributes to the relatively low ICM re-heating efficiency of the mechanical feedback.Comment: 12 pages, 14 figures. Accepted for publication in A&

    Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM)

    Get PDF
    This paper investigates the influence of jet traverse speed on the surface integrity of 0.66 wt% Al2O3 nanoparticle reinforced metal matrix composite (MMC) generated by Abrasive Water Jet Machining (AWJM). Surface morphology, surface topography, and surface roughness (SR) of the AWJ surface were analyzed. The machined surfaces of the nanocomposites were examined by laser confocal microscope and field emission scanning electron microscope (FESEM). Microhardness and elasticity modulus measurement by nanoindentation testing were also performed across thickness of the samples to see depth of the zone, affected by AWJ cutting. The result reveals that extent of grooving by abrasive particle and irregularity in AWJ machined surface increases as the traverse speed increased. Similarly, the rise in value of surface roughness parameters with traverse speed was also seen. In addition, nanoindentation testing represents the lower hardness and elastic modulus due to softening occurs in AWJ surface

    Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety

    Get PDF
    We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus cluster’s brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. These new observations were obtained with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view ( ∼11 arcmin × 11 arcmin), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc  ×  55 kpc ( 3.8 arcmin × 2.6 arcmin) large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]λ6583/H α line ratio, suggesting a change in the ionization mechanism and source across the nebula. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being uniformly pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus is also explored

    Lumpability Abstractions of Rule-based Systems

    Get PDF
    The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a mathematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the combinatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    Get PDF
    We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star formation rate (SFR) for the BCG in each cluster, based on the UV and IR continuum luminosity, as well as the [O II] emission line luminosity in cases where spectroscopy is available, finding 7 systems with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature. At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star formation rate in BCGs is declining more slowly with time than for field or cluster galaxies, most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z > 0.6, the correlation between cluster central entropy and BCG star formation - which is well established at z ~ 0 - is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs using data from the Hubble Space Telescope, finding complex, highly asymmetric UV morphologies on scales as large as ~50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling.Comment: 20 pages, 10 figures. Submitted for publication in ApJ. Comments welcom
    • …
    corecore