210 research outputs found
The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams
The phase shift due to the Sagnac Effect, for relativistic matter beams
counter-propagating in a rotating interferometer, is deduced on the bases of a
a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by
Sakurai, in which non relativistic quantum mechanics and newtonian physics
appear together with some intrinsically relativistic elements, is generalized
to a fully relativistic context, using the Cattaneo's splitting technique. This
approach leads to an exact derivation, in a self-consistently relativistic way,
of the Sagnac effect. Sakurai's result is recovered in the first order
approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and
Gravitatio
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
http://digilander.libero.it/solciclo
Absence of stable collinear configurations in Ni(001)ultrathin films: canted domain structure as ground state
Brillouin light scattering (BLS) measurements were performed for (17-120)
Angstrom thick Cu/Ni/Cu/Si(001) films. A monotonic dependence of the frequency
of the uniform mode on an in-plane magnetic field H was observed both on
increasing and on decreasing H in the range (2-14) kOe, suggesting the absence
of a metastable collinear perpendicular ground state. Further investigation by
magneto-optical vector magnetometry (MOKE-VM) in an unconventional canted-field
geometry provided evidence for a domain structure where the magnetization is
canted with respect to the perpendicular to the film. Spin wave calculations
confirm the absence of stable collinear configurations.Comment: 6 pages, 3 figures (text, appendix and 1 figure added
Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films
The influence of uncorrelated (nonmagnetic) overlayers on the magnetic
properties of thin itinerant-electron films is investigated within the
single-band Hubbard model. The Coulomb correlation between the electrons in the
ferromagnetic layers is treated by using the spectral density approach (SDA).
It is found that the presence of nonmagnetic layers has a strong effect on the
magnetic properties of thin films. The Curie temperatures of very thin films
are modified by the uncorrelated overlayers. The quasiparticle density of
states is used to analyze the results. In addition, the coupling between the
ferromagnetic layers and the nonmagnetic layers is discussed in detail. The
coupling depends on the band occupation of the nonmagnetic layers, while it is
almost independent of the number of the nonmagnetic layers. The induced
polarization in the nonmagnetic layers shows a long-range decreasing
oscillatory behavior and it depends on the coupling between ferromagnetic and
nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see:
http://orion.physik.hu-berlin.d
Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin. Evidence for a deficiency in SAP-1 and for a normal lysosomal neuraminidase
Exploring how awareness of character strengths can benefit mental health nurses
This is the third in a series of articles that explores the meaning of positive psychology and the importance of applying the latest research findings for the wellbeing of the mental health workforce. It will focus on character strengths as a positive psychology intervention from its development to present day use and how it is relevant to mental health nursing. The activities provided in the boxes throughout the article will help the reader identify their own strengths and understand how to further develop their transferability to daily work, home life, education and recreation
Stress and displacement pattern evaluation using two different palatal expanders in unilateral cleft lip and palate: a three-dimensional finite element analysis
Abstract Background In this finite element (FE) study, the stress distribution and displacement pattern was evaluated in the mid-palatal area and around circum-maxillary sutures exerted by bone-borne palatal expander (BBPE) in comparison with conventional HYRAX rapid palatal expander in unilateral cleft lip and palate. Methods Computed tomography scan images of a patient with unilateral cleft palate was used to create a FE model of the maxillary bone along with circum-maxillary sutures. A three-dimensional model of the conventional HYRAX (Hygienic Rapid Expander) expander and custom-made BBPE was created by laser scanning and programmed into the FE model. Results With the BBPE, the maximum stress was observed at the implant insertion site, whereas with the conventional HYRAX expander, it was at the dentition level. Among the circum-maxillary sutures, the zygomaticomaxillary suture experienced maximum stress followed by the zygomaticotemporal and nasomaxillary sutures. Displacement in the X-axis (transverse) was highest on the cleft side, and in the Y-axis (antero-posterior), it was highest in the posterior region in the BBPE. Conclusions The total displacement was observed maximum in the mid-palatal cleft area in the BBPE, and it produced true skeletal expansion at the alveolar level without any dental tipping when compared with the conventional HYRAX expander
Prevalence and Development of KIG-relevant Symptoms in Primary School Students from Frankfurt am Main*
- …
