680 research outputs found

    Dissipation of mechanical energy in fused silica fibers

    Get PDF
    For thermal noise considerations of LIGO suspensions, the sources of dissipation in the suspending fibers must be analyzed. To determine the dissipation induced by the surface of fused silica fibers, we measured the quality factor of fibers having various diameters. We measured a maximum quality factor of 21 million and extrapolated to obtain an intrinsic quality factor for fused silica of 30 million. Dissipation in the surface dominated at diameters less than about 1 mm. We developed a method for characterizing surface-induced dissipation that is independent of sample geometry or mode shape.Comment: 20 pages, 6 figures, RevTeX. Minor Revisions. Accepted for publication by Review of Scientific Instruments (29 June 1999). Projected publication date: October 199

    Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror

    Get PDF
    We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth made of excessively lossy material but with the same elastic material properties as the substrate. For the special case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica substrate with a loss function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot size and a 7 micrometers thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A similar number is obtained for sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001) Replacement: Minor typo in Eq. 17 correcte

    Evaluating Similarity Metrics for Latent Twitter Topics

    Get PDF
    Topic modelling approaches such as LDA, when applied on a tweet corpus, can often generate a topic model containing redundant topics. To evaluate the quality of a topic model in terms of redundancy, topic similarity metrics can be applied to estimate the similarity among topics in a topic model. There are various topic similarity metrics in the literature, e.g. the Jensen Shannon (JS) divergence-based metric. In this paper, we evaluate the performances of four distance/divergence-based topic similarity metrics and examine how they align with human judgements, including a newly proposed similarity metric that is based on computing word semantic similarity using word embeddings (WE). To obtain human judgements, we conduct a user study through crowdsourcing. Among various insights, our study shows that in general the cosine similarity (CS) and WE-based metrics perform better and appear to be complementary. However, we also find that the human assessors cannot easily distinguish between the distance/divergence-based and the semantic similarity-based metrics when identifying similar latent Twitter topics

    Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic x-ray scattering

    Get PDF
    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.Comment: Supplementary materials are available upon reques

    Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

    Full text link
    We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle of the coating material for strains parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for a coating deposited on a superpolished disk. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to Phys. Lett.
    • …
    corecore