232 research outputs found

    Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics

    Get PDF
    The ferroelectric and piezoelectric properties of (1-x)BiFeO3-xPbTiO(3) (BF-PT) ceramics were investigated as a function of tetragonal distortion. The latter was adjusted by employing La-doping (0-30 at %) while keeping the material near the morphotropic phase boundary by varying x between 0.35 and 0.46. This allows changing the c/a ratio of tetragonal BF-PT in the range from 1.10-1.01 and consequently alters the level of compatibility stresses. It was found that the c/a ratio has a significant influence on domain switching as inferred from electric field induced polarization, strain hysteresis, and Rayleigh measurements. Specifically, a threshold c/a ratio of about 1.045 was identified below which the electric field induced domain mobility increases sharply.open342

    Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

    Get PDF
    Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1-x-y) (Bi1/2 Na1/2) TiO3 -x BaTiO3 -y (K0.5 Na0.5) NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94 (Bi1/2 Na1/2) TiO3 -0.05 BaTiO3 -0.01 (K0.5 Na0.5) NbO3 ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91 (Bi1/2 Na1/2) TiO3 -0.07 BaTiO3 -0.02 (K0.5 Na0.5) NbO3 ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.open291

    Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos

    Full text link
    We present numerical simulations of coupled Ginzburg-Landau equations describing parametrically excited waves which reveal persistent dynamics due to the occurrence of phase slips in sequential pairs, with the second phase slip quickly following and negating the first. Of particular interest are solutions where these double phase slips occur irregularly in space and time within a spatially localized region. An effective phase diffusion equation utilizing the long term phase conservation of the solution explains the localization of this new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse

    Phase chaos in the anisotropic complex Ginzburg-Landau Equation

    Full text link
    Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader parameter range than in the isotropic case, and often even broader than in one dimension. They typically represent the global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-dimensional solution. The transition to defect chaos is of intermittent type.Comment: 4 pages RevTeX, 5 figures, little changes in figures and references, typos removed, accepted as Rapid Commun. in Phys. Rev.

    Domain switching energies: Mechanical versus electrical loading in La-doped bismuth ferrite-lead titanate

    Get PDF
    The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1 - x)(Bi(1-y)La(y))FeO(3)-xPbTiO(3) during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.open10

    Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region

    Get PDF
    Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions

    Frequency-dependence of large-signal properties in lead-free piezoceramics

    Get PDF
    The dependence of large signal properties of (1-x)(0.81Bi 1/2Na 1/2TiO 3-0.19Bi 1/2K 1/2TiO 3)-xBi(Zn 1/2Ti 1/2)O 3 with x 0.02, 0.03, and 0.04 on the measurement frequency was investigated for a wide range of frequencies from 0.1 Hz to 100 Hz. A significant frequency dispersion in the characteristic parameters representatively maximum and coercive values was denoted. On extension with the temperature dependent dielectric permittivity measurement, it was shown that the observed frequency dependence is primarily correlated with the dynamics of field-induced phase transition from a relaxor state to a long-range ferroelectric state. Increasing the substitutional disorder introduced by Bi(Zn 1/2Ti 1/2)O 3 addition was demonstrated to pronounce the frequency dependence. It was proposed that the change be due to the increase in random fields and consequent dominance of ergodicity, based on the frequency-dependent hysteresis measurements at an elevated temperature above so-called induced-ferroelectric-to-relaxor transition temperature.open8

    Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    Full text link
    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic one and the various hysteresis loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
    corecore