13,873 research outputs found
Robustness of the avalanche dynamics in data packet transport on scale-free networks
We study the avalanche dynamics in the data packet transport on scale-free
networks through a simple model. In the model, each vertex is assigned a
capacity proportional to the load with a proportionality constant . When
the system is perturbed by a single vertex removal, the load of each vertex is
redistributed, followed by subsequent failures of overloaded vertices. The
avalanche size depends on the parameter as well as which vertex triggers
it. We find that there exists a critical value at which the avalanche
size distribution follows a power law. The critical exponent associated with it
appears to be robust as long as the degree exponent is between 2 and 3, and is
close in value to that of the distribution of the diameter changes by single
vertex removal.Comment: 5 pages, 7 figures, final version published in PR
Evolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint
Understanding of how protein interaction networks (PIN) of living organisms
have evolved or are organized can be the first stepping stone in unveiling how
life works on a fundamental ground. Here we introduce a hybrid network model
composed of the yeast PIN and the protein family interaction network. The
essential ingredient of the model includes the protein family identity and its
robustness under evolution, as well as the three previously proposed ones: gene
duplication, divergence, and mutation. We investigate diverse structural
properties of our model with parameter values relevant to yeast, finding that
the model successfully reproduces the empirical data.Comment: 5 pages, 5 figures, 1 table. Title changed. Final version published
in JKP
Betweenness centrality correlation in social networks
Scale-free (SF) networks exhibiting a power-law degree distribution can be
grouped into the assortative, dissortative and neutral networks according to
the behavior of the degree-degree correlation coefficient. Here we investigate
the betweenness centrality (BC) correlation for each type of SF networks. While
the BC-BC correlation coefficients behave similarly to the degree-degree
correlation coefficients for the dissortative and neutral networks, the BC
correlation is nontrivial for the assortative ones found mainly in social
networks. The mean BC of neighbors of a vertex with BC is almost
independent of , implying that each person is surrounded by almost the
same influential environments of people no matter how influential the person
is.Comment: 4 pages, 4 figures, 1 tabl
Branching process approach for Boolean bipartite networks of metabolic reactions
The branching process (BP) approach has been successful in explaining the
avalanche dynamics in complex networks. However, its applications are mainly
focused on unipartite networks, in which all nodes are of the same type. Here,
motivated by a need to understand avalanche dynamics in metabolic networks, we
extend the BP approach to a particular bipartite network composed of Boolean
AND and OR logic gates. We reduce the bipartite network into a unipartite
network by integrating out OR gates, and obtain the effective branching ratio
for the remaining AND gates. Then the standard BP approach is applied to the
reduced network, and the avalanche size distribution is obtained. We test the
BP results with simulations on the model networks and two microbial metabolic
networks, demonstrating the usefulness of the BP approach
Intrinsic degree-correlations in static model of scale-free networks
We calculate the mean neighboring degree function and
the mean clustering function of vertices with degree as a function
of in finite scale-free random networks through the static model. While
both are independent of when the degree exponent , they show
the crossover behavior for from -independent behavior for
small to -dependent behavior for large . The -dependent behavior
is analytically derived. Such a behavior arises from the prevention of
self-loops and multiple edges between each pair of vertices. The analytic
results are confirmed by numerical simulations. We also compare our results
with those obtained from a growing network model, finding that they behave
differently from each other.Comment: 8 page
- …