14 research outputs found
Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY
Because dissolved organic matter (DOM) plays an important role is terrestrial C-,N-and P-balances and transport of these three components to aquatic environments, there is a need to include it in models. This paper presents the concept of the newly developed DOM modules implemented in the DAISY model with focus on the quantification of DOM sorption/desorption and microbial-driven DOM turnover. The kinetics of DOM sorption/desorption is described by the deviation of the actual DOM concentration in solution from the equilibrium concentration, Ceq. The Ceq is soil specific and estimated from pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics.
The DOM module was tested at field scale for three soil treatments applied after cultivating grass–clover swards. Suction cups were installed at depths 30, 60 and 90 cm and soil solution was sampled for quantification of dissolved organic C (DOC) and dissolved organic N (DON). In the topsoil, the observed fluctuations in DOC were successfully simulated when the sorption/desorption rate coefficient k was low. In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic concept for sorption/desorption of DOC appeared aviable approach. If Ceq was successfully estimated by the pedotransfer function it was possible to simulate the DOC concentration in the subsoil. In spite of difficulties in describing the DOC dynamics of the topsoil, the DOM module simulates the subsoil concentration level of DOC well, and also — but with more uncertainty — the DON concentration level
Simulering af DOC og DON i indsatsområde "Søndersø" på Fyn: Endelig rapport for Arbejdspakke 6 i projektet "Regional Grundvandsbeskyttelse ved hjælp af optimerede Økologiske Dyrkningssystemer"
Der er gennemført en beregning af udvaskning af nitrat, ammonium, DOC og DON for en konventionel og en økologisk situation i et indsatsområde ved “Søndersø” på Fyn. Beregningerne er udført med DAISY-modellen, indeholdende et nyudviklet DOC/DON-modul og MIKE SHE-modellen.
Modelopsætningen, der dækker et noget større område end selve indsatsområdet, baserer sig på den eksisterende arealanvendelse og landbrugssituation for en del af området, og ekstrapoleret i den nordvestlige del. Ekstrapolationen dækker kun en lille del af det faktiske indsatsområde. Modelopsætningerne bygger på tidligere modelleringsstudier i samme område.
Koncentrationerne af DOC og DON er stort set ens i de to scenarier på grund af, at den styrende faktor er jordens organiske pulje. På grund af større forekomst af græsmarker i økologisk landbrug ville man forvente en opbygning af den organiske pulje, men DAISY-modellen synes at undervurdere denne faktor. Forskellen i DOC/DON-produktion mellem konventionelt og økologisk jordbrug forventes derfor også at være undervurderet. For at beskrive DOC/DON-dynamikken i grundvandet, er den udvaskede mængde opdelt i forskellige puljer, med forskellige C/N-forhold og nedbrydningstid.
Mængden af uorganisk nitrat udvasket fra rodzonen er væsentligt lavere i indsatsområdet efter omlægning til økologisk brug, nemlig 29 kg N/ha i forhold til 70 kg N/ha i gennemsnit før omlægningen.
Effekten af omlægningen er noget forsinket. Nitratkoncentrationen til dræn falder fra 13.2 kg nitrat-N/ha (2003-2012) i det konventionelle scenarie til 9.5 kg nitrat-N/ha i det økologiske scenarie, opgjort som gennemsnit for de første 10 år af omlægningen (samme klimaserie og periode). For koncentrationerne i det øverste grundvandsmagasin bliver koncentrationsændringerne først rigtigt synlige mod slutningen af simuleringsperioden, men ikke i alle beregningspunkter. I 2013 er forskellen mellem den gennemsnitlige nitratkoncentration i det konventionelle og økologiske scenarie 9 procent (af koncentrationen for det konventionelle scenarie med redoxzone og DOC-nedbrydning implementeret), men det skylles at kun en lille del af det øverste magasin har en alder på 0-10 år. Fortsættes beregningerne derfor i yderligere 30 år, vil den lavere udvaskning i det økologiske scenarie også slå væsentligt kraftigere igennem på grundvandskoncentrationerne. Men man kan altså ikke forvente en umiddelbar effekt af en dyrkningsomlægning på en nitrattruet grundvandsindvinding.
Omkring 52 % af nitraten, der forlader rodzonen i indsatsområdet, reduceres i redoxzonen. Da dette gælder for begge scenarier, er der i de pågældende områder ingen effekt af omlægning. DOC-betinget denitrifikation har fjernet yderligere ca 6 % af nitraten i det konventionelle scenarie. Da den nedvaskede DOC-mængde er lille i beregningerne, kan dette tal være undervurderet, især i det økologiske scenarie. På den anden side er det antaget, at alt DOC-nedbrydning medvirker til denitrifikation, hvilket er en overvurdering. Forskellen mellem denne beregning og det økologiske scenarie er kun yderligere 4 procent i 2013 (konservativ transport og konventionelt scenarie = 100 %).
I denne rapport er gjort en række simple antagelser om nedbrydning, nitrifikation, denitrifikation og sorption i grundvandszonen. Antagelserne fører til en udvikling i DOC og DON, der nogenlunde svarer til generelle observationer vedrørende koncentrationer og C/N-forhold, men der foreligger ikke måledata eller detailundersøgelser, der kan anvendes til en mere detaljeret parameterisering og procesforståelse. For at opnå en bedre forståelse af betydningen af DOC-produktion på denitrifikation, ikke mindst i økologisk produktion, kræves derfor yderligere undersøgelser
Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil
Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics
Fate of 15N- and 14C from labelled plant material: Recovery in perennial ryegrass-clover mixtures and in pore water of the sward
The below ground C and N dynamics leading to organic and inorganic N leaching from perennial ryegrass-clover mixtures are not well understood. Based on the hypothesis that four different plant materials would degrade differently, a 16 months field experiment was conducted to determine (i) the source strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass-clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough layer during autumn and winter had a constant content of dissolved organic N (DON) and an increasing content of dissolved inorganic N (DIN). A positive correlation between aboveground clover biomass harvested in the growth season and total N in pore water indicated that decaying roots from the living clover could be a major source of the 10 kg N ha-1 being lost with pore water during autumn and winter. The presence of 15N in pore water shifted from the DON fraction in autumn to the DIN fraction in late winter, with strong indications that 15N originated from the living ryegrass. However, 15N in pore water originating from plant residues only constituted 1.5% of the total dissolved N from the plough layer