10,721 research outputs found
Atmospheric tomography with separate minimum variance laser and natural guide star mode control
This paper introduces a novel, computationally efficient, and practical atmospheric tomography wavefront control architecture with separate minimum variance laser and natural guide star mode estimation. The architecture is applicable to all laser tomography systems, including multi conjugate adaptive optics (MCAO), laser tomography adaptive optics (LTAO), and multi object adaptive optics (MOAO) systems. Monte Carlo simulation results for the Thirty Meter Telescope (TMT) MCAO system demonstrate its benefit over a previously introduced “ad hoc” split MCAO architecture, calling for further in-depth analysis and simulations over a representative ensemble of natural guide star (NGS) asterisms with optimized loop frame rates and modal gains
Real-time turbulence profiling with a pair of laser guide star Shack–Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes
Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack–Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations
Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing
We recently introduced matched filtering in the context of astronomical Shack-Hartmann wavefront sensing with elongated sodium laser beacons [Appl. Opt. 45, 6568 (2006)]. Detailed wave optics Monte Carlo simulations implementing this technique for the Thirty Meter Telescope dual conjugate adaptive optics system have, however, revealed frequent bursts of degraded closed loop residual wavefront error [Proc. SPIE 6272, 627236 (2006)]. The origin of this problem is shown to be related to laser guide star jitter on the sky that kicks the filter out of its linear dynamic range, which leads to bursts of nonlinearities that are reconstructed into higher-order wavefront aberrations, particularly coma and trifoil for radially elongated subaperture spots. An elegant reformulation of the algorithm is proposed to extend its dynamic range using a set of linear constraints while preserving its improved noise rejection and Monte Carlo performance results are reported that confirm the benefits of the method
Generating Homology Relationships by Alignment of Anatomical Ontologies
The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we aim to establish homology relations between ontologies describing different species. We present a new algorithm, and its implementation in the software Homolonto, to create new relationships between anatomical ontologies, based on the homology concept. These relationships and the Homolonto software are available at "http://bgee.unil.ch/.":http://bgee.unil.ch
Weak localization in multiterminal networks of diffusive wires
We study the quantum transport through networks of diffusive wires connected
to reservoirs in the Landauer-B\"uttiker formalism. The elements of the
conductance matrix are computed by the diagrammatic method. We recover the
combination of classical resistances and obtain the weak localization
corrections. For arbitrary networks, we show how the cooperon must be properly
weighted over the different wires. Its nonlocality is clearly analyzed. We
predict a new geometrical effect that may change the sign of the weak
localization correction in multiterminal geometries.Comment: 4 pages, LaTeX, 4 figures, 8 eps file
From Classical State-Swapping to Quantum Teleportation
The quantum teleportation protocol is extracted directly out of a standard
classical circuit that exchanges the states of two qubits using only
controlled-NOT gates. This construction of teleportation from a classically
transparent circuit generalizes straightforwardly to d-state systems.Comment: Missing daggers added to Figures 13, 14, and 15. Otherwise this is
the version that appeared in Physical Revie
Dephasing due to electron-electron interaction in a diffusive ring
We study the effect of the electron-electron interaction on the weak
localization correction of a ring pierced by a magnetic flux. We compute
exactly the path integral giving the magnetoconductivity for an isolated ring.
The results are interpreted in a time representation. This allows to
characterize the nature of the phase coherence relaxation in the ring. The
nature of the relaxation depends on the time regime (diffusive or ergodic) but
also on the harmonics of the magnetoconductivity. Whereas phase coherence
relaxation is non exponential for the harmonic , it is always exponential
for harmonics . Then we consider the case of a ring connected to
reservoirs and discuss the effect of connecting wires. We recover the behaviour
of the harmonics predicted recently by Ludwig & Mirlin for a large perimeter
(compared to the Nyquist length). We also predict a new behaviour when the
Nyquist length exceeds the perimeter.Comment: 21 pages, RevTeX4, 8 eps figures; version of 10/2006 : eqs.(100-102)
of section V.C correcte
- …