7,407 research outputs found

    The alpha-gamma transition of Cerium is entropy-driven

    Full text link
    We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. Using a formulation of the total energy as a functional of the local density and of the f-orbital local Green's functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple LMTO method, which allows to include semi-core states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.Comment: 5 pages, 6 figure

    Stable fractal sums of pulses: the cylindrical case

    Full text link
    A class of α-stable, 0\textlessα\textless2, processes is obtained as a sum of ’up-and-down’ pulses determined by an appropriate Poisson random measure. Processes are H-self-affine (also frequently called ’self-similar’) with H\textless1/α and have stationary increments. Their two-dimensional dependence structure resembles that of the fractional Brownian motion (for H\textless1/2), but their sample paths are highly irregular (nowhere bounded with probability 1). Generalizations using different shapes of pulses are also discussed

    Potential-energy (BCS) to kinetic-energy (BEC)-driven pairing in the attractive Hubbard model

    Full text link
    The BCS-BEC crossover within the two-dimensional attractive Hubbard model is studied by using the Cellular Dynamical Mean-Field Theory both in the normal and superconducting ground states. Short-range spatial correlations incorporated in this theory remove the normal-state quasiparticle peak and the first-order transition found in the Dynamical Mean-Field Theory, rendering the normal state crossover smooth. For UU smaller than the bandwidth, pairing is driven by the potential energy, while in the opposite case it is driven by the kinetic energy, resembling a recent optical conductivity experiment in cuprates. Phase coherence leads to the appearance of a collective Bogoliubov mode in the density-density correlation function and to the sharpening of the spectral function.Comment: 5 pages, 4 figure

    Robust self-trapping of vortex beams in a saturable optical medium

    Get PDF
    We report the first observation of robust self-trapping of vortex beams propagating in a uniform condensed medium featuring local saturable self-focusing nonlinearity. Optical vortices with topological charge m=1, that remain self-trapped over ~ 5 Rayleigh lengths, are excited in carbon disulfide using a helical light beam at 532 nm and intensities from 8 to 10 GW/cm^2. At larger intensities, the vortex beams lose their stability, spontaneously breaking into two fragments. Numerical simulations based on the nonlinear Schr\"odinger equation including the three-photon absorption and nonpolynomial saturation of the refractive nonlinearity demonstrate close agreement with the experimental findings.Comment: 27 pages, 7 figures,to be published in Phys. Rev. A (2016

    Is the Mott transition relevant to f-electron metals ?

    Full text link
    We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local moment phase and a Kondo- screened phase. The first-order transition line terminates in two critical endpoints. Implications for experiments on f-electron materials such as the Cerium alloy Ce0.8_{0.8}La0.1_{0.1}Th0.1_{0.1} are discussed.Comment: 5 pages, 3 figure

    Importance of interorbital charge transfers for the metal-to-insulator transition of BaVS3_3

    Full text link
    The underlying mechanism of the metal-to-insulator transition (MIT) in BaVS3_3 is investigated, using dynamical mean-field theory in combination with density functional theory. It is shown that correlation effects are responsible for a strong charge redistribution, which lowers the occupancy of the broader \a1g band in favor of the narrower EgE_g bands. This resolves several discrepancies between band theory and the experimental findings, such as the observed value of the charge-density wave ordering vector associated with the MIT, and the presence of local moments in the metallic phase.Comment: improved discussion, new figure, added reference
    corecore