13 research outputs found

    Over 18% ternary polymer solar cells enabled by a terpolymer as the third component

    Get PDF
    “Ternary blending” and “random terpolymerization” strategies have both proven effective for enhancing the performance of organic solar cells (OSCs). However, reports on the combination of the two strategies remain rare. Here, a terpolymer PM6-Si30 was constructed by inserting chlorine and alkylsilyl-substituted benzodithiophene (BDT) unit (0.3 equivalent) into the state-of-the-art polymer PM6. The terpolymer exhibitsadeep highest-occupied-molecular-orbital energy and good miscibility with both PM6 and BTP-eC9 (C9) and enables its use as a third component into PM6:PM6-Si30:C9 bulk-heterojunction for OSCs. The resulting cells exhibit maximum power conversion efficiency (PCE) of 18.27%, which is higher than that obtained for the optimized control binary PM6:C9-based OSC (17.38%). The enhanced performance of the PM6:PM6-Si30:C9 cells is attributed to improved charge transport, favorable molecular arrangement, reduced energy loss and suppressed bimolecular recombination. The work demonstrates the potential of random terpolymer as a third component in OSCs and highlights a new strategy for the construction of a ternary system with improved photovoltaic performance

    Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells

    No full text
    In this study, wide bandgap (WBG) two-dimensional (2D) copolymer donors (DZ1, DZ2, and DZ3) based on benzodithiophene (BDT) on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluorobenzotriazole (FBTZ) are designed and synthesized successfully for efficient non-fullerene polymer solar cells (PSCs). Three polymer donors DZ1, DZ2, and DZ3 display similar absorption spectra at 300-700 nm range with optional band-gap (E-g(opt)) of 1.84, 1.92, and 1.97 eV, respectively. Compared with reported DZ1 without chlorine substitution, it is found that introducing chlorine atoms into the meta-position of the alkoxyphenyl group affords polymer possessing a deeper the highest occupied molecular orbital (HOMO) energy level, which can increase open circuit voltage (V-OC) of PSCs, as well as improve hole mobility. Non-fullerene bulk heterojunction PSCs based on DZ2:MeIC demonstrate a relatively high power conversion efficiency (PCE) of 10.22% with a V-OC of 0.88 V, a short-circuit current density (J(SC)) of 17.62 mA/cm(2), and a fill factor (FF) of 68%, compared with PSCs based on DZ1:MeIC (a PCE of 8.26%) and DZ3:MeIC (a PCE of 6.28%). The results imply that adjusting chlorine atom amount on alkoxyphenyl side chains based on BDT polymer donors is a promising approach of synthesizing electron-rich building block for high performance of PSCs
    corecore