2,199 research outputs found

    Astrophysics in 2006

    Get PDF
    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.Comment: 244 pages, no figure

    Effects of nonorthogonality in the time-dependent current through tunnel junctions

    Full text link
    A theoretical technique which allows to include contributions from non-orthogonality of the electron states in the leads connected to a tunneling junction is derived. The theory is applied to a single barrier tunneling structure and a simple expression for the time-dependent tunneling current is derived showing explicit dependence of the overlap. The overlap proves to be necessary for a better quantitative description of the tunneling current, and our theory reproduces experimental results substantially better compared to standard approaches.Comment: 4 pages, 1 table, 1 figur

    No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J

    Full text link
    Left-over, ablated material from a possible non-degenerate companion can reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have searched for such material in spectra of SN 2011fe (at 294 days after the explosion) and for SN 2014J (315 days past explosion). The observations are compared with numerical models simulating the expected line emission. The spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and the expected width of these lines is about 1000 km/s. No signs of these lines can be traced in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are 0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on helium-rich ablated gas. These limits are used, in conjunction with other data, to argue that these supernovae can stem from double-degenerate systems, or from single-degenerate systems with a spun up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a main-sequence donor system with large intrinsic separation is still possible. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN 2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.Comment: 13 pages, submitted to A&

    SN 1998bw at late phases

    Full text link
    We present observations of the peculiar supernova SN 1998bw, which was probably associated with GRB 980425. The photometric and spectroscopic evolution is monitored up to 500 days past explosion. We also present modeling based on spherically symmetric, massive progenitor models and very energetic explosions. The models allow line identification and clearly show the importance of mixing. From the late light curves we estimate that about 0.3-0.9 solar masses of ejected Nickel-56 is required to power the supernova.Comment: With 3 figures Accepted for ApJ Letter

    Supernova 1998bw - The final phases

    Full text link
    The probable association with GRB 980425 immediately put SN 1998bw at the forefront of supernova research. Here, we present revised late-time BVRI light curves of the supernova, based on template images taken at the VLT. To follow the supernova to the very last observable phases we have used HST/STIS. Deep images taken in June and November 2000 are compared to images taken in August 2001. The identification of the supernova is firmly established. This allows us to measure the light curve to about 1000 days past explosion. The main features are a rapid decline up to more than 500 days after explosion, with no sign of complete positron trapping from the Cobolt-56 decay. Thereafter, the light curve flattens out significantly. One possible explanation is powering by more long lived radioactive isotopes, if they are abundantly formed in this energetic supernova.Comment: 13 pages, 5 figures, A&A, In pres

    Analysis of the Type IIn Supernova 1998S: Effects of Circumstellar Interaction on Observed Spectra

    Get PDF
    We present spectral analysis of early observations of the Type IIn supernova 1998S using the general non-local thermodynamic equilibrium atmosphere code \tt PHOENIX}. We model both the underlying supernova spectrum and the overlying circumstellar interaction region and produce spectra in good agreement with observations. The early spectra are well fit by lines produced primarily in the circumstellar region itself, and later spectra are due primarily to the supernova ejecta. Intermediate spectra are affected by both regions. A mass-loss rate of order M˙0.00010.001\dot M \sim 0.0001-0.001\msol yr1^{-1} is inferred for a wind speed of 100-1000 \kmps. We discuss how future self-consistent models will better clarify the underlying progenitor structure.Comment: to appear in ApJ, 2001, 54
    corecore