73 research outputs found
Vortex Plastic Motion in Twinned Superconductors
We present simulations, without electrodynamical assumptions, of
, and , in hard superconductors, for a variety
of twin-boundary pinning potential parameters, and for a range of values of the
density and strength of the pinning sites. We numerically solve the overdamped
equations of motion of up to 10^4 flux-gradient-driven vortices which can be
temporarily trapped at pinning centers. These simulations relate
macroscopic measurements (e.g., M(H), ``flame'' shaped profiles) with
the underlying microscopic pinning landscape and the plastic dynamics of
individual vortices
Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms
We analyze the angular dependence of the irreversible magnetization of
YBaCuO crystals with columnar defects inclined from the c-axis. At
high fields a sharp maximum centered at the tracks' direction is observed. At
low fields we identify a lock-in phase characterized by an angle-independent
pinning strength and observe an angular shift of the peak towards the c-axis
that originates in the material anisotropy. The interplay among columnar
defects, twins and ab-planes generates a variety of staircase structures. We
show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure
Resistive Transition and Upper Critical Field in Underdoped YBa_2Cu_3O_{6+x} Single Crystals
A superconducting transition in the temperature dependence of the ab-plane
resistivity of underdoped YBa_2Cu_3O_{6+x} crystals in the range T_c<30 K has
been investigated. Unlike the case of samples with the optimal level of doping,
the transition width increased insignificantly with magnetic field, and in the
range T_c<13 K it decreased with increasing magnetic field. The transition
point T_c(B) was determined by analyzing the fluctuation conductivity. The
curves of B_{c2}(T) measured in the region T/T_c>0.1 did not show a tendency to
saturation and had a positive second derivative everywhere, including the
immediate neighborhood of T_c. The only difference among the curves of
B_{c2}(T) for different crystal states is the scales of T and B, so they can be
described in terms of a universal function, which fairly closely follows
Alexandrov's model of boson superconductivity.Comment: 10 Revtex pages, 6 figures, uses psfig.st
Vortex dynamics in layered superconductors with correlated defects: influence of interlayer coupling
We report a detailed study of the vortex dynamics and vortex phase diagrams
of two amorphous Ta_0.3Ge_0.7/Ge multilayered films with intrinsic coplanar
defects, but different interlayer coupling. A pinned Bose-glass phase in the
more weakly coupled sample exists only below a cross-over field H* in striking
contrast to the strongly coupled film. Above H* the flux lines are thought to
break up into pancake vortices and the cross-over field is significantly
increased when the field is aligned along the extended defects. The two films
show different vortex creep excitations in the Bose-glass phase.Comment: zip file: 1 RevTex, 5 figures (png
Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films
We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using
spatially resolved heavy ion irradiation. Structures consisting of a periodic
array of strong and weak pinning channels were created with the help of metal
masks. The channels formed an angle of +/-45 Deg with respect to the symmetry
axis of the photolithographically patterned structures. Investigations of the
anisotropic transport properties of these structures were performed. We found
striking resemblance to guided vortex motion as it was observed in YBCO single
crystals containing an array of unidirected twin boundaries. The use of two
additional test bridges allowed to determine in parallel the resistivities of
the irradiated and unirradiated parts as well as the respective current-voltage
characteristics. These measurements provided the input parameters for a
numerical simulation of the potential distribution of the Hall patterning. In
contrast to the unidirected twin boundaries in our experiment both strong and
weak pinning regions are spatially extended. The interfaces between
unirradiated and irradiated regions therefore form a Bose-glass contact. The
experimentally observed magnetic field dependence of the transverse voltage
vanishes faster than expected from the numerical simulation and we interpret
this as a hydrodynamical interaction between a Bose-glass phase and a vortex
liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
First order phase transition of the vortex lattice in twinned YBa2Cu3O7 single crystals in tilted magnetic fields
We present an exhaustive analysis of transport measurements performed in
twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid
transition is first order when the magnetic field H is applied at an angle
theta away from the direction of the twin planes. We show that the resistive
transitions are hysteretic and the V-I curves are non-linear, displaying a
characteristic s-shape at the melting line Hm(T), which scales as
epsilon(theta)Hm(T,theta). These features are gradually lost when the critical
point H*(theta) is approached. Above H*(theta) the V-I characteristics show a
linear response in the experimentally accessible V-I window, and the transition
becomes reversible. Finally we show that the first order phase transition takes
place between a highly correlated vortex liquid in the field direction and a
solid state of unknown symmetry. As a consequence, the available data support
the scenario for a vortex-line melting rather than a vortex sublimation as
recently suggested [T.Sasagawa et al. PRL 80, 4297 (1998)].Comment: 10 pages, 8 figures, submitted to PR
Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals
We report on drastic change of vortex dynamics with increase of quenched
disorder: for rather weak disorder we found a single vortex creep regime, which
we attribute to a Bragg-glass phase, while for enhanced disorder we found an
increase of both the depinning current and activation energy with magnetic
field, which we attribute to entangled vortex phase. We also found that
introduction of additional defects always increases the depinning current, but
it increases activation energy only for elastic vortex creep, while it
decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.
Longitudinal and transverse dissipation in a simple model for the vortex lattice with screening
Transport properties of the vortex lattice in high temperature
superconductors are studied using numerical simulations in the case in which
the non-local interactions between vortex lines are dismissed. The results
obtained for the longitudinal and transverse resistivities in the presence of
quenched disorder are compared with the results of experimental measurements
and other numerical simulations where the full interaction is considered. This
work shows that the dependence on temperature of the resistivities is well
described by the model without interactions, thus indicating that many of the
transport characteristics of the vortex structure in real materials are mainly
a consequence of the topological configuration of the vortex structure only. In
addition, for highly anisotropic samples, a regime is obtained where
longitudinal coherence is lost at temperatures where transverse coherence is
still finite. I discuss the possibility of observing this regime in real
samples.Comment: 9 pages, 7 figures included using epsf.st
- …