1,214 research outputs found
Phase transition and landscape statistics of the number partitioning problem
The phase transition in the number partitioning problem (NPP), i.e., the
transition from a region in the space of control parameters in which almost all
instances have many solutions to a region in which almost all instances have no
solution, is investigated by examining the energy landscape of this classic
optimization problem. This is achieved by coding the information about the
minimum energy paths connecting pairs of minima into a tree structure, termed a
barrier tree, the leaves and internal nodes of which represent, respectively,
the minima and the lowest energy saddles connecting those minima. Here we apply
several measures of shape (balance and symmetry) as well as of branch lengths
(barrier heights) to the barrier trees that result from the landscape of the
NPP, aiming at identifying traces of the easy/hard transition. We find that it
is not possible to tell the easy regime from the hard one by visual inspection
of the trees or by measuring the barrier heights. Only the {\it difficulty}
measure, given by the maximum value of the ratio between the barrier height and
the energy surplus of local minima, succeeded in detecting traces of the phase
transition in the tree. In adddition, we show that the barrier trees associated
with the NPP are very similar to random trees, contrasting dramatically with
trees associated with the spin-glass and random energy models. We also
examine critically a recent conjecture on the equivalence between the NPP and a
truncated random energy model
Axially symmetric rotating traversable wormholes
This paper generalizes the static and spherically symmetric traversable
wormhole geometry to a rotating axially symmetric one with a time-dependent
angular velocity by means of an exact solution. It was found that the violation
of the weak energy condition, although unavoidable, is considerably less severe
than in the static spherically symmetric case. The radial tidal constraint is
more easily met due to the rotation. Similar improvements are seen in one of
the lateral tidal constraints. The magnitude of the angular velocity may have
little effect on the weak energy condition violation for an axially symmetric
wormhole. For a spherically symmetric one, however, the violation becomes less
severe with increasing angular velocity. The time rate of change of the angular
velocity, on the other hand, was found to have no effect at all. Finally, the
angular velocity must depend only on the radial coordinate, confirming an
earlier result.Comment: 17 pages, AMSTe
Impact of right ventricular end systolic volume and mitral regurgitation on survival in patients with severe ischemic cardiomyopathy
Gauge Field Back-reaction on a Black Hole
The order fluctuations of gauge fields in the vicinity of a blackhole
can create a repulsive antigravity region extending out beyond the renormalized
Schwarzschild horizon. If the strength of this repulsive force increases as
higher orders in the back-reaction are included, the formation of a
wormhole-like object could occur.Comment: 17 pages, three figures available on request, in RevTe
DNA hybridization catalysts and catalyst circuits
Practically all of life's molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in
DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA "fuel". We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits
Vacuum polarization of a scalar field in wormhole spacetimes
An analitical approximation of for a scalar field in a static
spherically symmetric wormhole spacetime is obtained. The scalar field is
assumed to be both massive and massless, with an arbitrary coupling to
the scalar curvature, and in a zero temperature vacuum state.Comment: 10 pages, RevTeX, two eps figure
Ground state energy in a wormhole space-time
The ground state energy of the massive scalar field with non-conformal
coupling on the short-throat flat-space wormhole background is calculated
by using zeta renormalization approach. We discuss the renormalization and
relevant heat kernel coefficients in detail. We show that the stable
configuration of wormholes can exist for . In particular case of
massive conformal scalar field with , the radius of throat of stable
wormhole . The self-consistent wormhole has radius of throat
and mass of scalar boson ( and
are the Planck length and mass, respectively).Comment: revtex, 18 pages, 3 eps figures. accepted in Phys.Rev.
Gravitational memory of natural wormholes
A traversable wormhole solution of general scalar-tensor field equations is
presented. We have shown, after a numerical analysis for the behavior of the
scalar field of Brans-Dicke theory, that the solution is completely
singularity--free. Furthermore, the analysis of more general scalar field
dependent coupling constants indicates that the gravitational memory phenomenon
may play an important role in the fate of natural wormholes.Comment: 14 pages revtex, 1 ps figur
Fractal geometry of spin-glass models
Stability and diversity are two key properties that living entities share
with spin glasses, where they are manifested through the breaking of the phase
space into many valleys or local minima connected by saddle points. The
topology of the phase space can be conveniently condensed into a tree
structure, akin to the biological phylogenetic trees, whose tips are the local
minima and internal nodes are the lowest-energy saddles connecting those
minima. For the infinite-range Ising spin glass with p-spin interactions, we
show that the average size-frequency distribution of saddles obeys a power law
, where w=w(s) is the number of minima that can be
connected through saddle s, and D is the fractal dimension of the phase space
Statistical mechanics of secondary structures formed by random RNA sequences
The formation of secondary structures by a random RNA sequence is studied as
a model system for the sequence-structure problem omnipresent in biopolymers.
Several toy energy models are introduced to allow detailed analytical and
numerical studies. First, a two-replica calculation is performed. By mapping
the two-replica problem to the denaturation of a single homogeneous RNA in
6-dimensional embedding space, we show that sequence disorder is perturbatively
irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten
phase where many secondary structures with comparable total energy coexist. A
numerical study of various models at high temperature reproduces behaviors
characteristic of the molten phase. On the other hand, a scaling argument based
on the extremal statistics of rare regions can be constructed to show that the
low temperature phase is unstable to sequence disorder. We performed a detailed
numerical study of the low temperature phase using the droplet theory as a
guide, and characterized the statistics of large-scale, low-energy excitations
of the secondary structures from the ground state structure. We find the
excitation energy to grow very slowly (i.e., logarithmically) with the length
scale of the excitation, suggesting the existence of a marginal glass phase.
The transition between the low temperature glass phase and the high temperature
molten phase is also characterized numerically. It is revealed by a change in
the coefficient of the logarithmic excitation energy, from being disorder
dominated to entropy dominated.Comment: 24 pages, 16 figure
- …
