1,950 research outputs found
A problem formulation for glideslope tracking in wind shear using advanced robust control techniques
A formulation of the longitudinal glideslope tracking of a transport-class aircraft in severe wind shear and turbulence for application to robust control system design is presented. Mathematical wind shear models are incorporated into the vehicle mathematical model, and wind turbulence is modeled as an input disturbance signal. For this problem formulation, the horizontal and vertical wind shear gradients are treated as real uncertain parameters that vary over an entire wind shear profile. The primary objective is to examine the formulation of this problem into an appropriate design format for use in m-synthesis control system design
On the formulation of a minimal uncertainty model for robust control with structured uncertainty
In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix, delta, and constructing the state-space representation of P(s). Three examples are presented to illustrate the procedure
Error Corrective Boosting for Learning Fully Convolutional Networks with Limited Data
Training deep fully convolutional neural networks (F-CNNs) for semantic image
segmentation requires access to abundant labeled data. While large datasets of
unlabeled image data are available in medical applications, access to manually
labeled data is very limited. We propose to automatically create auxiliary
labels on initially unlabeled data with existing tools and to use them for
pre-training. For the subsequent fine-tuning of the network with manually
labeled data, we introduce error corrective boosting (ECB), which emphasizes
parameter updates on classes with lower accuracy. Furthermore, we introduce
SkipDeconv-Net (SD-Net), a new F-CNN architecture for brain segmentation that
combines skip connections with the unpooling strategy for upsampling. The
SD-Net addresses challenges of severe class imbalance and errors along
boundaries. With application to whole-brain MRI T1 scan segmentation, we
generate auxiliary labels on a large dataset with FreeSurfer and fine-tune on
two datasets with manual annotations. Our results show that the inclusion of
auxiliary labels and ECB yields significant improvements. SD-Net segments a 3D
scan in 7 secs in comparison to 30 hours for the closest multi-atlas
segmentation method, while reaching similar performance. It also outperforms
the latest state-of-the-art F-CNN models.Comment: Accepted at MICCAI 201
Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy
OBJECTIVE
Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.
METHODS
High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.
RESULTS
Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.
CONCLUSION
These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients
Parametric uncertainty modeling for application to robust control
Viewgraphs and a paper on parametric uncertainty modeling for application to robust control are included. Advanced robust control system analysis and design is based on the availability of an uncertainty description which separates the uncertain system elements from the nominal system. Although this modeling structure is relatively straightforward to obtain for multiple unstructured uncertainties modeled throughout the system, it is difficult to formulate for many problems involving real parameter variations. Furthermore, it is difficult to ensure that the uncertainty model is formulated such that the dimension of the resulting model is minimal. A procedure for obtaining an uncertainty model for real uncertain parameter problems in which the uncertain parameters can be represented in a multilinear form is presented. Furthermore, the procedure is formulated such that the resulting uncertainty model is minimal (or near minimal) relative to a given state space realization of the system. The approach is demonstrated for a multivariable third-order example problem having four uncertain parameters
Simultaneous Matrix Diagonalization for Structural Brain Networks Classification
This paper considers the problem of brain disease classification based on
connectome data. A connectome is a network representation of a human brain. The
typical connectome classification problem is very challenging because of the
small sample size and high dimensionality of the data. We propose to use
simultaneous approximate diagonalization of adjacency matrices in order to
compute their eigenstructures in more stable way. The obtained approximate
eigenvalues are further used as features for classification. The proposed
approach is demonstrated to be efficient for detection of Alzheimer's disease,
outperforming simple baselines and competing with state-of-the-art approaches
to brain disease classification
Multi-view Brain Network Prediction from a Source View Using Sample Selection via CCA-Based Multi-kernel Connectomic Manifold Learning
Several challenges emerged from the dataclysm of neuroimaging datasets spanning both healthy and disordered brain spectrum. In particular, samples with missing data views (e.g., functional imaging modality) constitute a hurdle to conventional big data learning techniques which ideally would be trained using a maximum number of samples across all views. Existing works on predicting target data views from a source data view mainly used brain images such as predicting PET image from MRI image. However, to the best of our knowledge, predicting a set of target brain networks from a source network remains unexplored. To ll this gap, a multi-kernel manifold learning (MKML) framework is proposed to learn how to predict multi-view brain networks from a source network to impute missing views in a connectomic dataset. Prior to performing multiple kernel learning of multi-view data, it is typically assumed that the source and target data come from the same distribution. However, multi-view connectomic data can be drawn from different distributions. In order to build robust predictors for predicting target multi-view networks from a source network view, it is necessary to take into account the shift between the source and target domains. Hence, we first estimate a mapping function that transforms the source and the target domains into a shared space where their correlation is maximized using canonical correlation analysis (CCA). Next, we nest the projected training and testing source samples into a connectomic manifold using multiple kernel learning, where we identify the most similar training samples to the testing source network. Given a testing subject, we introduce a cross-domain trust score to assess the reliability of each selected training sample for the target prediction task. Our model outperformed both conventional MKML technique and the proposed CCA-based MKMLtechnique without enhancement by trust scores
Pulse Sequence Resilient Fast Brain Segmentation
Accurate automatic segmentation of brain anatomy from
-weighted~(-w) magnetic resonance images~(MRI) has been a
computationally intensive bottleneck in neuroimaging pipelines, with
state-of-the-art results obtained by unsupervised intensity modeling-based
methods and multi-atlas registration and label fusion. With the advent of
powerful supervised convolutional neural networks~(CNN)-based learning
algorithms, it is now possible to produce a high quality brain segmentation
within seconds. However, the very supervised nature of these methods makes it
difficult to generalize them on data different from what they have been trained
on. Modern neuroimaging studies are necessarily multi-center initiatives with a
wide variety of acquisition protocols. Despite stringent protocol harmonization
practices, it is not possible to standardize the whole gamut of MRI imaging
parameters across scanners, field strengths, receive coils etc., that affect
image contrast. In this paper we propose a CNN-based segmentation algorithm
that, in addition to being highly accurate and fast, is also resilient to
variation in the input -w acquisition. Our approach relies on building
approximate forward models of -w pulse sequences that produce a typical
test image. We use the forward models to augment the training data with test
data specific training examples. These augmented data can be used to update
and/or build a more robust segmentation model that is more attuned to the test
data imaging properties. Our method generates highly accurate, state-of-the-art
segmentation results~(overall Dice overlap=0.94), within seconds and is
consistent across a wide-range of protocols.Comment: Accepted at MICCAI 201
Supervised Nonparametric Image Parcellation
Author Manuscript 2010 August 25. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IISegmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.NAMIC (NIHNIBIBNAMICU54-EB005149)NAC (NIHNCRRNACP41-RR13218)mBIRN (NIHNCRRmBIRNU24-RR021382)NIH NINDS (Grant R01-NS051826)National Science Foundation (U.S.) (CAREER Grant 0642971)NCRR (P41-RR14075)NCRR (R01 RR16594-01A1)NIBIB (R01 EB001550)NIBIB (R01EB006758)NINDS (R01 NS052585-01)Mind Research InstituteEllison Medical FoundationSingapore. Agency for Science, Technology and Researc
Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm
The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of (Formula presented.) (Formula presented.) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi
- …