439 research outputs found

    A note on a canonical dynamical r-matrix

    Full text link
    It is well known that a classical dynamical rr-matrix can be associated with every finite-dimensional self-dual Lie algebra \G by the definition R(ω):=f(adω)R(\omega):= f(\mathrm{ad} \omega), where \omega\in \G and ff is the holomorphic function given by f(z)=1/2coth⁥z2−1zf(z)={1/2}\coth \frac{z}{2}-\frac{1}{z} for z\in \C\setminus 2\pi i \Z^*. We present a new, direct proof of the statement that this canonical rr-matrix satisfies the modified classical dynamical Yang-Baxter equation on \G.Comment: 17 pages, LaTeX2

    Edge effect on spider assemblages

    Get PDF

    Performance analysis and optimization of the JOREK code for many-core CPUs

    Get PDF
    This report investigates the performance of the JOREK code on the Intel Knights Landing and Skylake processor architectures. The OpenMP scaling of the matrix construction part of the code was analyzed and improved synchronization methods were implemented. A new switch was implemented to control the number of threads used for the linear equation solver independently from other parts of the code. The matrix construction subroutine was vectorized, and the data locality was also improved. These steps led to a factor of two speedup for the matrix construction

    The impact of physiologically relevant temperatures on physical properties of thylakoid membranes:a molecular dynamics study

    Get PDF
    Thylakoid membranes are energy-converting membranes with a unique lipid composition. Though the membranes are primarily composed of proteins, their photosynthetic function is strongly influenced by the lipid constituents. Here we characterize, with molecular dynamics (MD) simulations, lipid bilayers with compositions representative of plant thylakoid membranes. We determine, in a wide range of temperatures, the physical parameters of the model membranes which are relevant for the photosynthetic function. We found a marked impact of temperature on membrane permeability due to a combination of increased compressibility and curvature of the membrane at elevated temperatures. With increasing temperatures, we observed increasingly smeared transmembrane density profiles of the membrane forming lipid headgroups predicting increased membrane flexibility. The diffusion coefficient of the lipids increased with temperature without apparent specificity for lipid species. Instead of a comprehensive experimental dataset in the relevant temperature range, we quantitatively compared and validated our MD results with MD simulations on a dipalmitoylphosphatidylcholine model system.</p
    • 

    corecore