28 research outputs found

    Effect of Organic Fertilizers on Nutrients Content and Essential Oil Composition of Savory (Satureja Hortensis L.)

    Full text link
    Application of organic fertilizers in the production of plants is aimed to eliminate or substantially reduce the use of chemical inputs and improve the growth and quality of plants. For instance, in present study, the effect of vermicompost and spent mushroom compost application on nutritional status and essential oil components of summer Savory (Saturejahortensis L.) was investigated. This experiment was conducted in the research greenhouse of Faculty of Agriculture at Mohaghegh Ardabili University using a layout of completely randomized design with five replications on Savory in 2014. Experimental treatments included different substrates that contained vermicompost, washed and unwashed spent mushroom compost in five levels (10, 20, 30, 40 and 50 Percent v/v). After flowering, the plants were harvested and parameters such as leaf area, leaf and plant dry weight, chlorophyll index of leaf and N, P, K, and Ca content and essential oil component of plants were measured. The results showed that the effect of organic substrates on macronutrient content and savory's growth parameters was significant. The highest Nitrogen content (6.3%) and Phosphorus (0.98%) in savory shoot was obtained in a substrate supplemented with 40% vermicompost. Plants grown in the media containing 30% of vermicompost and 50% of washed spent mushroom compost (SMC) have higher potassium (3.19%) and calcium (2.48%) content, respectively. The lowest nitrogen, phosphorus and potassium content in the aerial part was obtained in the control treatment. Moreover, application of organic fertilizers significantly affected on savory's essential oil percentage and compounds composition. The highest and lowest essential oil contents were obtained in plants in substrates containing 30 % of vermicompost and unwashed spent mushroom compost respectively. The main components of essential oil were carvacrol and gamma-trepenine. The highest level of carvacrol (62.10) and gamma-trepenine (32.05) were obtained in plants in substrates containing 40 and 20% of washed spent mushroom respectively

    Symbiotic Fungus Serendipita indica as a Natural Bioenhancer Against Cadmium Toxicity in Chinese Cabbage

    No full text
    Heavy metal toxicity, particularly cadmium (Cd), poses a growing threat to agriculture and human health due to its persistence and high solubility, which facilitates its entry into the food chain. Among the strategies proposed to reduce Cd toxicity in plants and the environment, the use of beneficial microorganisms, such as endophytic fungi, has gained attention due to its effectiveness and eco-friendliness. This study investigates the potential of the root-colonizing fungus Serendipita indica (formerly Piriformospora indica) to mitigate cadmium (Cd) stress in Chinese cabbage (Brassica rapa L. subsp. Pekinensis) grown hydroponically under varying Cd concentrations (0, 1, 3, and 4 mM). Several parameters were assessed, including morphological traits, physiological and biochemical responses, and changes in leaf composition. Exposure to Cd significantly reduced plant growth, increased membrane electrolyte leakage, and decreased relative water content and root colonization, while enhancing antioxidant enzyme activities and the accumulation of phenolics, flavonoids, proline, glycine betaine, and carbohydrates. Notably, plants treated with S. indica showed improved tolerance to Cd stress, indicating the potential of the fungus. These findings suggest that S. indica can enhance plant resilience in Cd-contaminated environments and may offer a promising biological strategy for sustainable crop production under heavy metal stress
    corecore