799 research outputs found
Recommended from our members
Effects of a Mindfulness-Based Intervention on Distress, Weight Gain, and Glucose Control for Pregnant Low-Income Women: A Quasi-Experimental Trial Using the ORBIT Model.
BackgroundStress can lead to excessive weight gain. Mindfulness-based stress reduction that incorporates mindful eating shows promise for reducing stress, overeating, and improving glucose control. No interventions have tested mindfulness training with a focus on healthy eating and weight gain during pregnancy, a period of common excessive weight gain. Here, we test the effectiveness of such an intervention, the Mindful Moms Training (MMT), on perceived stress, eating behaviors, and gestational weight gain in a high-risk sample of low income women with overweight/obesity.MethodWe conducted a quasi-experimental study assigning 115 pregnant women to MMT for 8 weeks and comparing them to 105 sociodemographically and weight equivalent pregnant women receiving treatment as usual. Our main outcomes included weight gain (primary outcome), perceived stress, and depression.ResultsWomen in MMT showed significant reductions in perceived stress (β = - 0.16) and depressive symptoms (β = - 0.21) compared to the treatment as usual (TAU) control group. Consistent with national norms, the majority of women (68%) gained excessive weight according to Institute of Medicine weight-gain categories, regardless of group. Slightly more women in the MMT group gained below the recommendation. Among secondary outcomes, women in MMT reported increased physical activity (β = 0.26) and had lower glucose post-oral glucose tolerance test (β = - 0.23), being 66% less likely to have impaired glucose tolerance, compared to the TAU group.ConclusionA short-term intervention led to significant improvements in stress, and showed promise for preventing glucose intolerance. However, the majority of women gained excessive weight. A longer more intensive intervention may be needed for this high-risk population. Clinical Trials.gov #NCT01307683
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Nitromusk and Polycyclic Musk Compounds as Long-Term Inhibitors of Cellular Xenobiotic Defense Systems Mediated by Multidrug Transporters
Synthetic musk compounds, widely used as fragrances in consumer products, have been detected in human tissue and, surprisingly, in aquatic organisms such as fish and mollusks. Although their persistence and potential to bioaccumulate are of concern, the toxicity and environmental risks of these chemicals are generally regarded as low. Here, however, we show that nitromusks and polycyclic musks inhibit the activity of multidrug efflux transporters responsible for multixenobiotic resistance (MXR) in gills of the marine mussel Mytilus californianus. The IC(10) (concentration that inhibits 10%) values for the different classes of musks were in the range of 0.09–0.39 μM, and IC(50) values were 0.74–2.56 μM. The immediate consequence of inhibition of efflux transporters is that normally excluded xenobiotics will now be able to enter the cell. Remarkably, the inhibitory effects of a brief 2-hr exposure to musks were only partially reversed after a 24- to 48-hr recovery period in clean seawater. This unexpected consequence of synthetic musks—a long-term loss of efflux transport activity—will result in continued accumulation of normally excluded toxicants even after direct exposure to the musk has ended. These findings also point to the need to determine whether other environmental chemicals have similar long-term effects on these transporters. The results are relevant to human health because they raise the possibility that exposure to common xenobiotics and pharmaceuticals could cause similar long-term inhibition of these transporters and lead to increased exposure to normally excluded toxicants
Circulating leukocyte telomere length is highly heritable among families of Arab descent
Background
Telomere length, an indicator of ageing and longevity, has been correlated with several biomarkers of cardiometabolic disease in both Arab children and adults. It is not known, however, whether or not telomere length is a highly conserved inheritable trait in this homogeneous cohort, where age-related diseases are highly prevalent. As such, the aim of this study was to address the inheritability of telomere length in Saudi families and the impact of cardiometabolic disease biomarkers on telomere length.
Methods
A total of 119 randomly selected Saudi families (123 adults and 131 children) were included in this cross-sectional study. Anthropometrics were obtained and fasting blood samples were taken for routine analyses of fasting glucose and lipid profile. Leukocyte telomere length was determined using quantitative real time PCR.
Results
Telomere length was highly heritable as assessed by a parent-offspring regression [h2 = 0.64 (p = 0.0006)]. Telomere length was modestly associated with BMI (R2 0.07; p-value 0.0087), total cholesterol (R2 0.08; p-value 0.0033), and LDL-cholesterol (R2 0.15; p-value 3 x 10-5) after adjustments for gender, age and age within generation.
Conclusion
The high heritability of telomere length in Arab families, and the associations of telomere length with various cardiometabolic parameters suggest heritable genetic fetal and/or epigenetic influences on the early predisposition of Arab children to age-related diseases and accelerated ageing
Two-Dimensional Pulsed TRIPLE at 95 GHz
The one-dimensional (1D) pulsed TRIPLE resonance experiment, introduced by Mehring et al. (M. Mehring, P. Höfer, and A. Grupp, Ber. Bunseges. Phys. Chem. 91, 1132-1137 (1987)) is a modification of the standard Davies ENDOR experiment where an additional RF π-pulse is applied during the mixing time. While the first RF pulse is set to one of the ENDOR transitions, the frequency of the second RF pulse is scanned to generate the TRIPLE spectrum. The difference between this spectrum and the ENDOR spectrum yields the difference TRIPLE spectrum, which exhibits only ENDOR lines that belong to the same Ms manifold as the one selected by the first RF pulse. We have extended this experiment in two dimensions (2D) by sweeping the frequencies of both RF pulses. This experiment is particularly useful when the spectrum is congested and consists of signals originating from different paramagnetic centers. The connectivities between the peaks in the 2D spectrum enable a straightforward assignment of the signals to their respective centers and Ms manifolds, thus providing the relative signs of hyperfine couplings. Carrying out the experiment at high fields has the additional advantage that nuclei with different nuclear gyromagnetic ratios are well separated. This is particularly true for protons which appear at significantly higher frequencies than other nuclei. The feasibility and effectiveness of the experiment is demonstrated at W-band (94.9 GHz) on a crystal of Cu2+-doped L-histidine. Homonuclear 1H-1H, 14N/35Cl-14N/35Cl and heteronuclear 1H-14N/35Cl 2D TRIPLE spectra were measured and from the various connectivities in the 2D map the 1H, 14N, and 35Cl signals that belong to two different Cu2+ centers were identified and grouped according to their Ms manifolds. © 2000 Academic Press
Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging
© 2015 Elsevier Inc. All rights reserved. Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage
Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina
7 páginas, 4 figuras, 3 tablasTelomeres usually shorten during an organism’s lifespan and have thus been used as an aging and health marker. When
telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via
telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from
adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations,
as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we
compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias
tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in
two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on
12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly
longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal–Wallis test (K=24.17,
significant value: P-valueo0.001), with the former also characterized by higher levels of clonality derived from asexual
reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within
individuals (pyloric cecum tissue: Mann–Whitney test, V=299, P-valueo10− 6; and tube feet tissue Student's t= 2.28,
P-value =0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and
persistence of clonal populations is telomere elongation.This research was financially supported by a
PhD fellowship FPI-MICINN (BES-2011-044154) (ACG), the European
ASSEMBLY project (227799), the Swedish Royal Academy of Sciences (ACG)
and the Spanish Government project CTM2010-22218-C02. The research was
also supported by a ‘Juan de la Cierva’ contract from the Spanish Government
(RPP) and by the Adlerbertska Research Foundation (HNS).Peer reviewe
Relationship Between Self-Reported Health and Stress in Mothers of Children with Autism Spectrum Disorders
Resonators ″loop-slot″ for pulse ESR spectrometers of 3 cm range
Constructions of two-loop ″loop-slot″-type resonators for pulse electron paramagnetic resonance spectrometers of 3 cm range are described. The resonators are characterized by 1 GHz frequency tuning and controlled connection with waveguide line. Microwave power which is necessary for optimum echo attainment at the usage of these resonators is shown to be by 10 db less than in a case of usual rectangular resonator
- …
