97 research outputs found

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Self-Consistent Relativistic Calculation of Nucleon Mean Free Path

    Full text link
    We present a fully self-consistent and relativistic calculation of the nucleon mean free path in nuclear matter and finite nuclei. Starting from the Bonn potential, the Dirac-Brueckner-Hartree-Fock results for nuclear matter are parametrized in terms of an effective σ\sigma-ω\omega Lagrangian suitable for the relativistic density-dependent Hartree-Fock (RDHF) approximation. The nucleon mean free path in nuclear matter is derived from this effective Lagrangian taking diagrams up to fourth-order into account. For the nucleon mean free path in finite nuclei, we make use of the density determined by the RDHF calculation in the local density approximation. Our microscopic results are in good agreement with the empirical data and predictions by Dirac phenomenology.Comment: 16 pages RevTex and 6 figures (paper, available upon request from [email protected]) UI-NTH-931

    Experimentelle Methoden

    Full text link

    Resorption von Kohlenhydraten

    Full text link

    Einfluß von Ballaststoffen auf die Funktion des Dünndarms

    Full text link

    Resorption von Eiweiß

    Full text link

    Iron Supplementation

    No full text
    Iron deficiency affects approx. 20% of the world pupulation. Due to predominatly vegetarian diets that reduce the bioavailability of food iron drastically, deficiency states are most widely distributed in developing countries. In addition, iron demand is increase by blood losses and by fast growth which increase the risk of iron deficiency in infants, young adolescents, and in menstruation and pregnant women. The symptoms of iron deficiency include impaired physical and intellectual performance. Iron supplementation may help to break the vicious cycle between inadequate nutrition and poverty. Fortification programs have to consider social and health aspects, including provision against iron overload. Excess iron stores may promote cancer and increase the cardiovascular risk, though the latter is a subject of current debate. The best approach to control such risks is individual iron supplementation geared to the demand by adequate laboratory controls. However, this approach is too costl y for general application in developing countries. Food-iron fortification has successfully reduce iron deficiency in many trials and, in comparison, is much cheaper. As iron deficiency is widely distributed in most developing countries, the risk of inducing iron overload in the general population is low. Genetically determined diseases that may lead to siderosis, such as hereditary haemochromatosis or thalassaemia major, show a limited geographic and ethnic distribution. Such subgroups can be largely avoided by targeting food-iron fortification to infants, young adolescents, or pregnant women. Food vehicle and iron compound have to be matched in order to optimise iron bioavailability and to avoid rancidity in food, spoiling its taste and odour. The fortification of salt, sugar and spice mixtures or of bakery products with a short shelf-life are valid approaches to this end. Alternatively, haem iron can be used to fortify cereal-based food staples in developing countries such as torti l las or chappaties. Thus, a variety of options is available to solve the technical problems of food iron fortification. However, optimal solutions have to be tailored to the individual situation in each country
    corecore