38 research outputs found

    PET Cell Tracking Using 18F-FLT is Not Limited by Local Reuptake of Free Radiotracer

    Get PDF
    Assessing the retention of cell therapies following implantation is vital and often achieved by labelling cells with 2'-[(18)F]-fluoro-2'-deoxy-D-glucose ((18)F-FDG). However, this approach is limited by local retention of cell-effluxed radiotracer. Here, in a preclinical model of critical limb ischemia, we assessed a novel method of cell tracking using 3'-deoxy-3'-L-[(18)F]-fluorothymidine ((18)F-FLT); a clinically available radiotracer which we hypothesise will result in minimal local radiotracer reuptake and allow a more accurate estimation of cell retention. Human endothelial cells (HUVECs) were incubated with (18)F-FDG or (18)F-FLT and cell characteristics were evaluated. Dynamic positron emission tomography (PET) images were acquired post-injection of free (18)F-FDG/(18)F-FLT or (18)F-FDG/(18)F-FLT-labelled HUVECs, following the surgical induction of mouse hind-limb ischemia. In vitro, radiotracer incorporation and efflux was similar with no effect on cell viability, function or proliferation under optimised conditions (5 MBq/mL, 60 min). Injection of free radiotracer demonstrated a faster clearance of (18)F-FLT from the injection site vs. (18)F-FDG (p ≤ 0.001), indicating local cellular uptake. Using (18)F-FLT-labelling, estimation of HUVEC retention within the engraftment site 4 hr post-administration was 24.5 ± 3.2%. PET cell tracking using (18)F-FLT labelling is an improved approach vs. (18)F-FDG as it is not susceptible to local host cell reuptake, resulting in a more accurate estimation of cell retention

    Status of vibrational structure in Ni62

    No full text
    Measurements consisting of γ-ray excitation functions and angular distributions were performed using the (n,n′γ) reaction on Ni62. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ~3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure. © 2011 American Physical Society
    corecore