297 research outputs found
Automated Identification and Differentiation of Spectrally Similar Hydrothermal Minerals on Mars
Early telescopic observations corroborated hydration related absorptions on Mars in the infrared. Images from the Viking missions led to speculation of hydrothermal alteration and were followed by two missions which mapped the spatial variability of the ~ 3 m hydration feature. Since then, the Compact Reconnaissance Imager for Mars (CRISM) has provided high spatial resolution (up to 18m) spectral identification of a suite of hydrothermal and diagenetic minerals which have illuminated a range of formation mechanisms. Presence/absence and spatial segregation or mixing of minerals like prehnite, epidote, chlorite amphiboles, and mixed-layer Fe/Mg smectite-chlorite provide valuable evidence for the geologic setting of deposits on Earth, and these phases are often used as temperature and aqueous chemistry indicators in terrestrial systems. Mapping the distribution of these phases will help to answer whether Mars had widespread conditions favorable for low-grade metamorphism and diagenesis, or only focused hydrothermal systems in areas of high heat flow. Further characterizing the chemistry and structure of these phases will then help to answer how most of the widespread Fe/Mg phyllosilicates formed, further defining early geochemical cycling and climate. A fully automated approach for accurate mapping of important hydrothermal mineral phases on Mars has been a challenge. Due to overlapping features in the M-OH region (~2.2-2.4 m), the strongest absorption features of chlorite, prehnite, and epidote in the short-wave infrared are difficult to distinguish from one another and from the most commonly occurring hydrated silicates on Mars, Fe/Mg smectites. Weaker absorptions are present in both prehnite and epidote which help to distinguish them from chlorite and smectites, but their relative strength in the presence of noise and spatial mixing is often too low to confidently identify them without the noise suppression and feature enhancement methods described here. The spectral signatures of mixed-layer Fe/Mg smectite-chlorite and partially chloritized Fe/Mg smectites have not yet been adequately assessed. Here we evaluate the effectiveness of two empirical and statistical methods for identifying and differentiating these phases using CRISM data
ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars
At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188 000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO_2, TiO_2, Al_2O_3, FeO_T, MgO, CaO, Na_2O, K_2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic Noachian crust, first observation of hydrated soil, discovery of manganese-rich coatings and fracture fills indicating strong oxidation potential in Mars' early atmosphere, characterization of soils by grain size, and wide scale mapping of sedimentary strata, conglomerates, and diagenetic materials
Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, northern plains, Mars
Here we report detections of Fe/Mg phyllosilicates and hydrated silica in discrete stratigraphic units within the knobby terrains of Acidalia Planitia made using data acquired by Compact Reconnaissance Imaging Spectrometer for Mars. Fe/Mg phyllosilicates are detected in knobs that were eroded during southward retreat of the dichotomy boundary. A second later unit, now eroded to steep-sided platforms embaying the knobs, contains hydrated silica, which may have formed via localized vapor weathering, thin-film leaching, or transient water that resulted in surface alteration. These are then overlain by smooth plains with small cones, hypothesized to be mud volcanoes which previous studies have shown to have no hydrated minerals. In spite of Acidalia's location within the putative northern ocean, collectively, the data record a history of aqueous processes much like that in the southern highlands with progressively less intensive aqueous chemical alteration from the Noachian to Amazonian
A PCA-Based Framework for Determining Remotely Sensed Geological Surface Orientations and Their Statistical Quality
The orientations of planar rock layers are fundamental to our understanding of structural geology and stratigraphy. Remote sensing platforms including satellites, unmanned aerial vehicles, and Light Detection and Ranging scanners are increasingly used to build three-dimensional models of structural features on Earth and other planets. Remotely gathered orientation measurements are straightforward to calculate but subject to uncertainty inherited from input data, differences in viewing geometry, and the plane-fitting process, complicating geological interpretation. Here, we improve upon the present state of the art by developing a generalized means for computing and reporting errors in strike-dip measurements from remotely sensed data. We outline a general framework for representing the error space of uncertain orientations in Cartesian and spherical coordinates and develop a principal component analysis (PCA) regression method, which captures statistical errors independent of viewing geometry and input data structure. We also introduce graphical techniques to visualize the uniqueness and quality of orientation measurements and a process to increase statistical power by jointly fitting bedding planes under the assumption of parallel stratigraphy. These new techniques are validated by comparison of field-gathered orientation measurements with those derived from minimally processed satellite imagery of the San Rafael Swell, Utah, and unmanned aerial vehicle imagery from the Naukluft Mountains, Namibia. We provide software packages supporting planar fitting and visualization of error distributions. This method increases the precision and comparability of structural measurements gathered using a new generation of remote sensing techniques
Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.
Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets
The ~5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mössbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains
Geologic setting of serpentine deposits on Mars
Serpentine, recently discovered on Mars using Mars Reconnaissance Orbiter data, is uncommon but found in three geologic settings: (1) in mélange terrains at the Claritas Rise and the Nili Fossae, (2) associated with a few southern highlands impact craters, and (3) associated with a regional olivine-rich stratigraphic unit near the Isidis basin. Any presently active serpentinization processes would be occurring beneath the surface and mineral products would not be apparent with surface and orbital data; however, finding serpentine in several Noachian terrains indicates active serpentinization processes in Mars' past. Important implications are the past production of magnetite, which may contribute to chemical remnant magnetization of Mars' crust, and production of H_2, which is a suitable energy source for chemosynthetic microbial life
The Co-Evolution of Mars’ Atmosphere and Massive South Polar CO₂ Ice Deposit
A Massive CO₂ Ice Deposit (MCID) that rivals the mass of Mars’ current, 96% CO₂ atmosphere was recently discovered to overlie part of Mars’ southern H₂O cap [1]. The MCID is layered: a top layer of 1-10 m of CO₂, the Residual South Polar Cap (RSPC) [2], is underlain by ~10-20 m of H₂O ice, followed by up to three 100s-meter-thick layers of CO2 ice, separated by two layers of ~20-40 m of H₂O ice [3] (Fig. 1). Previous studies invoked orbital cycles to explain the layering, assuming the H₂O ice insulates and seals in the CO₂, allowing it to survive periods of high obliquity [3,4]. We also model that orbital cycles [5] drive the MCID’s development, but instead assume the MCID is in continuous vapor contact with the atmosphere rather than sealed. Pervasive meter-scale polygonal patterning and km-scale collapse pits observed on the sub-RSPC H₂O layer [1,3] are consistent with it being fractured and permeable to CO₂ mass flux. Using currently observed optical properties of martian polar CO₂ ice deposits [6], our model demonstrates that the present MCID is a remnant of larger CO₂ ice deposits laid down during epochs of decreasing obliquity that are eroded, liberating a residual lag layer of H₂O ice, when obliquity increases. With these assumptions, our energy balance model ex-plains why only the south polar cap hosts an MCID, why the RSPC exists, and the observed MCID stratigraphy. We use our model to calculate Mars’ pressure history and the age of the MCID
- …