1,436 research outputs found
Fast electrochemical doping due to front instability in organic semiconductors
The electrochemical doping transformation in organic semiconductor devices is
studied in application to light-emitting cells. It is shown that the device
performance can be significantly improved by utilizing new fundamental
properties of the doping process. We obtain an instability, which distorts the
doping fronts and increases the doping rate considerably. We explain the
physical mechanism of the instability, develop theory, provide experimental
evidence, and perform numerical simulations. We further show how improved
device design can amplify the instability thus leading to a much faster doping
process and device kinetics.Comment: 4 pages, 4 figure
Inter-Intra Molecular Dynamics as an Iterated Function System
The dynamics of units (molecules) with slowly relaxing internal states is
studied as an iterated function system (IFS) for the situation common in e.g.
biological systems where these units are subjected to frequent collisional
interactions. It is found that an increase in the collision frequency leads to
successive discrete states that can be analyzed as partial steps to form a
Cantor set. By considering the interactions among the units, a self-consistent
IFS is derived, which leads to the formation and stabilization of multiple such
discrete states. The relevance of the results to dynamical multiple states in
biomolecules in crowded conditions is discussed.Comment: 7 pages, 7 figures. submitted to Europhysics Letter
Synchronization of active mechanical oscillators by an inertial load
Motivated by the operation of myogenic (self-oscillatory) insect flight
muscle, we study a model consisting of a large number of identical oscillatory
contractile elements joined in a chain, whose end is attached to a damped
mass-spring oscillator. When the inertial load is small, the serial coupling
favors an antisynchronous state in which the extension of one oscillator is
compensated by the contraction of another, in order to preserve the total
length. However, a sufficiently massive load can sychronize the oscillators and
can even induce oscillation in situations where isolated elements would be
stable. The system has a complex phase diagram displaying quiescent,
synchronous and antisynchrononous phases, as well as an unsual asynchronous
phase in which the total length of the chain oscillates at a different
frequency from the individual active elements.Comment: 5 pages, 4 figures, To appear in Phys. Rev. Let
Survival and residence times in disordered chains with bias
We present a unified framework for first-passage time and residence time of
random walks in finite one-dimensional disordered biased systems. The
derivation is based on exact expansion of the backward master equation in
cumulants. The dependence on initial condition, system size, and bias strength
is explicitly studied for models with weak and strong disorder. Application to
thermally activated processes is also developed.Comment: 13 pages with 2 figures, RevTeX4; v2:minor grammatical changes, typos
correcte
Biochemistry and functional aspects of human glandular kallikreins
Human urinary kallikrein was purified by gel filtration on Sephacryl S-200 and affinity chromatography on aprotinin-Sepharose, followed by ion exchange chromatography on DEAE-Sepharose. In dodecylsulfate gel electrophoresis two protein bands with molecular weights of 41,000 and 34,000 were separated. The amino acid composition and the carbohydrate content of the kallikrein preparation were determined; isoleucine was identified as the only aminoterminal amino acid. The bimolecular velocity constant for the inhibition by diisopropyl fluorophosphate was determined as 9±2 l mol–1 min–1. The hydrolysis of a number of substrates was investigated and AcPheArgOEt was found to be the most sensitive substrate for human urinary kallikrein. Using this substrate an assay method for kallikrein in human urine was developed.
It was shown by radioimmunoassay that pig pancreatic kallikrein can be absorbed in the rat intestinal tract. Furthermore, in dogs the renal excretion of glandular kallikrein from blood was demonstrated by radioimmunological methods
Force and Motion Generation of Molecular Motors: A Generic Description
We review the properties of biological motor proteins which move along linear
filaments that are polar and periodic. The physics of the operation of such
motors can be described by simple stochastic models which are coupled to a
chemical reaction. We analyze the essential features of force and motion
generation and discuss the general properties of single motors in the framework
of two-state models. Systems which contain large numbers of motors such as
muscles and flagella motivate the study of many interacting motors within the
framework of simple models. In this case, collective effects can lead to new
types of behaviors such as dynamic instabilities of the steady states and
oscillatory motion.Comment: 29 pages, 9 figure
Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.
Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes
EVIDENCE-SCIENTIFIC TESTS FOR lNTOXICATION-ADMISSIBILITY
It is the purpose of this comment to examine the admissibility and probative value of the tests available for determining the amount of alcohol in the human system
β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed
Purpose: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. Methods: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day−1 of BA (n=12) or placebo (PLA; n=11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. Results: BA supplementation had no effect on voluntary
or electrically evoked isometric force production, or
twitch electromechanical delay and time-to-peak tension.
There was a significant decline in muscle HRT in fresh and fatigued muscle conditions during both resting (3±13%; 19±26%) and potentiated (1±15%; 2±20%) twitch
contractions. Conclusions: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. Trial registration The trial is registered with Clinicaltrials.gov, ID number NCT02819505
- …
