432 research outputs found

    Coarse-grained microscopic model of glass formers

    Full text link
    We introduce a coarse-grained model for atomic glass formers. Its elements are physically motivated local microscopic dynamical rules parameterized by observables. Results of the model are established and used to interpret the measured behaviors of supercooled fluids approaching glass transitions. The model predicts the presence of a crossover from hierarchical super-Arrhenius dynamics at short length scales to diffusive Arrhenius dynamics at large length scales. This prediction distinguishes our model from other theories of glass formers and can be tested by experiment.Comment: 5 pages, 5 figure

    Eddy Covariance flux errors due to random and systematic timing errors during data acquisition

    Get PDF
    Modern eddy covariance (EC) systems collect high-frequency data (10–20 Hz) via digital outputs of instru ments. This is an important evolution with respect to the tra ditional and widely used mixed analog/digital systems, as fully digital systems help overcome the traditional limita tions of transmission reliability, data quality, and complete ness of the datasets

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids

    Full text link
    By applying the concept of dynamical facilitation and analyzing the excitation lines that result from this facilitation, we investigate the origin of decoupling of transport coefficients in supercooled liquids. We illustrate our approach with two classes of models. One depicts diffusion in a strong glass former, and the other in a fragile glass former. At low temperatures, both models exhibit violation of the Stokes-Einstein relation, Dτ1D\sim\tau^{-1}, where DD is the self diffusion constant and τ\tau is the structural relaxation time. In the strong case, the violation is sensitive to dimensionality dd, going as Dτ2/3D\sim\tau^{-2/3} for d=1d=1, and as Dτ0.95D\sim \tau^{-0.95} for d=3d=3. In the fragile case, however, we argue that dimensionality dependence is weak, and show that for d=1d=1, Dτ0.73D \sim \tau^{-0.73}. This scaling for the fragile case compares favorably with the results of a recent experimental study for a three-dimensional fragile glass former.Comment: 7 pages, 7 figures, submitted to Phys. Rev.

    Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models

    Full text link
    The response of spherical two-spin interaction models, the spherical ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is calculated for the protocol of the so-called nonresonant hole burning experiment (NHB) for temperatures below the respective critical temperatures. It is shown that it is possible to select dynamic features in the out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic heterogeneities. The behavior of the s-SK model and the s-FM in three dimensions is very similar, showing dynamic heterogeneities in the long time behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities in the s-SK model explicitly demonstrates that these are not necessarily related to {\it spatial} heterogeneities. For the s-FM it is shown that the nature of the dynamic heterogeneities changes as a function of dimensionality. With incresing dimension the frequency selectivity of the NHB diminishes and the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure

    Kinetic Heterogeneities in a Highly Supercooled Liquid

    Full text link
    We study a highly supercooled two-dimensional fluid mixture via molecular dynamics simulation. We follow bond breakage events among particle pairs, which occur on the scale of the α\alpha relaxation time τα\tau_{\alpha}. Large scale heterogeneities analogous to the critical fluctuations in Ising systems are found in the spatial distribution of bonds which are broken in a time interval with a width of order 0.05τα0.05\tau_{\alpha}. The structure factor of the broken bond density is well approximated by the Ornstein-Zernike form. The correlation length is of order 100σ1100 \sigma_1 at the lowest temperature studied, σ1\sigma_1 being the particle size. The weakly bonded regions thus identified evolve in time with strong spatial correlations.Comment: 3 pages, 6 figure

    Is there something of the MCT in orientationally disordered crystals ?

    Full text link
    Molecular Dynamics simulations have been performed on the orientationally disordered crystal chloroadamantane: a model system where dynamics are almost completely controlled by rotations. A critical temperature T_c = 225 K as predicted by the Mode Coupling Theory can be clearly determined both in the alpha and beta dynamical regimes. This investigation also shows the existence of a second remarkable dynamical crossover at the temperature T_x > T_c consistent with a previous NMR and MD study [1]. This allows us to confirm clearly the existence of a 'landscape-influenced' regime occurring in the temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX

    The nature of slow dynamics in a minimal model of frustration-limited domains

    Full text link
    We present simulation results for the dynamics of a schematic model based on the frustration-limited domain picture of glass-forming liquids. These results are compared with approximate theoretical predictions analogous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached, the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly exponential in time at each wave vector, indicating that the mode coupling effects dominating liquid relaxation are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate even for temperatures at which the mode coupling approximation predicts loss of ergodicity. These results suggest that the thermodynamically disordered phase of such a minimal model poorly caricatures the slow dynamics of a liquid near its glass transition

    Aging and multiscaling in out of equilibrium dynamical processes in granular media

    Full text link
    In the framework of recently introduced frustrated lattice gas models, we study the out of equilibrium dynamical processes during the compaction process in granular media. We find irreversible-reversible cycles in agreement with recent experimental observations. Moreover in analogy with the phenomenology of the glass transition we find aging effects during the compaction process In particular we find that the two time density correlation function C(t,t)C(t,t') asymptotically scales as a function of the single variable ln(t)/ln(t)\ln(t')/\ln(t). This result is interpreted in terms of multiscaling properties of the system.Comment: 4 page
    corecore