2,981 research outputs found

    On the Coexistence in RuSr2GdCu2O8 of Superconductivity and Ferromagnetism

    Full text link
    We review the reasons that make superconductivity unlikely to arise in a ferromagnet. Then, in light of the report by Tallon and collaborators that RuSr2GdCu2O8 becomes superconducting at approximately 35 K which is well below the Curie temperature of 132 K, we consider whether the objections really apply to this compound. Our considerations are supported by local spin density calculations for this compound, which indeed indicate a ferromagnetic RuO2 layer. The Ru moment resides in t_2g orbitals but is characteristic of itinerant magnetism (and is sensitive to choice of exchange-correlation potential and to the atomic positions). Based on the small exchange splitting that is induced in the Cu-O layers, the system seems capable of supporting singlet superconductivity an FFLO-type order parameter and possibly a pi-phase alternation between layers. If instead the pairing is triplet in the RuO2 layers, it can be distinguished by a spin-polarized supercurrent. Either type of superconductivity seems to imply a spontaneous vortex phase if the magnetization is rotated out of the plane.Comment: 3 revtex pages, 2 embedded figures. In press, Proc. HTS99 Conf., Miami, 199

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0−d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(π,π\pi,\pi) orbital ordering of ℓz=0\ell_z = 0 and ℓz=−1\ell_z = -1 (jz=−1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 μB\mu_B strongly compensates the spin moment on the ℓz=−1\ell_z = -1 sublattice. The insulator-metal transition for n=1→5n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0−d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    Disorder-Induced Stabilization of the Pseudogap in Strongly Correlated Systems

    Full text link
    The interplay of strong interaction and strong disorder, as contained in the Anderson-Hubbard model, is addressed using two non-perturbative numerical methods: the Lanczos algorithm in the grand canonical ensemble at zero temperature and Quantum Monte Carlo. We find distinctive evidence for a zero-energy anomaly which is robust upon variation of doping, disorder and interaction strength. Its similarities to, and differences from, pseudogap formation in other contexts, including perturbative treatments of interactions and disorder, classical theories of localized charges, and in the clean Hubbard model, are discussed.Comment: 4.2 pages, 4 figure

    Origin of Superconductivity in Boron-doped Diamond

    Full text link
    Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in Physical Review Letters(2004)

    NaAlSi: a self-doped semimetallic superconductor with free electrons and covalent holes

    Full text link
    The layered ternary sp conductor NaAlSi, possessing the iron-pnictide "111" crystal structure, superconducts at 7 K. Using density functional methods, we show that this compound is an intrinsic (self-doped) low-carrier-density semimetal with a number of unusual features. Covalent Al-Si valence bands provide the holes, and free-electron-like Al 3s bands, which propagate in the channel between the neighboring Si layers, dip just below the Fermi level to create the electron carriers. The Fermi level (and therefore the superconducting carriers) lies in a narrow and sharp peak within a pseudogap in the density of states. The small peak arises from valence bands which are nearly of pure Si, quasi-two-dimensional, flat, and coupled to Al conduction bands. Isostructural NaAlGe, which is not superconducting above 1.6 K, has almost exactly the same band structure except for one missing piece of small Fermi surface. Certain deformation potentials induced by Si and Na displacements along the c-axis are calculated and discussed. It seems likely that the mechanism of pairing is related to that of several other lightly doped two-dimensional nonmagnetic semiconductors (TiNCl, ZrNCl, HfNCl), which is not well understood but apparently not of phonon origin.Comment: 9 pages, 7 figures, 1 tabl

    Pressure-Induced Simultaneous Metal-Insulator and Structural-Phase Transitions in LiH: a Quasiparticle Study

    Full text link
    A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-electron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.Comment: 7 pages, 4 figures, submitted to Europhysics Letter
    • …
    corecore