1,132 research outputs found
Edge state transport through disordered graphene nanoribbons in the quantum Hall regime
The presence of strong disorder in graphene nanoribbons yields low-mobility
diffusive transport at high charge densities, whereas a transport gap occurs at
low densities. Here, we investigate the longitudinal and transverse
magnetoresistance of a narrow (60 nm) nanoribbon in a six-terminal Hall bar
geometry. At B= 11 T, quantum Hall plateaux appear at ,
and , for which the Landau level spacing is larger than
the Landau level broadening. Interestingly, the transport gap does not
disappear in the quantum Hall regime, when the zero-energy Landau level is
present at the charge neutrality point, implying that it cannot originate from
a lateral confinement gap. At high charge densities, the longitudinal and Hall
resistance exhibit reproducible fluctuations, which are most pronounced at the
transition regions between Hall plateaux. Bias-dependent measurements strongly
indicate that these fluctuations can be attributed to phase coherent scattering
in the disordered ribbon.Comment: experimental paper; 4 pages, 4 figure
Quantum Hall effect in narrow graphene ribbons
The edge states in the integer quantum Hall effect are known to be
significantly affected by electrostatic interactions leading to the formation
of compressible and incompressible strips at the boundaries of Hall bars. We
show here, in a combined experimental and theoretical analysis, that this does
not hold for the quantum Hall effect in narrow graphene ribbons. In our
graphene Hall bar, which is only 60 nm wide, we observe the quantum Hall effect
up to Landau level index k=2 and show within a zero free-parameter model that
the spatial extent of the compressible and incompressible strips is of a
similar magnitude as the magnetic length. We conclude that in narrow graphene
ribbons the single-particle picture is a more appropriate description of the
quantum Hall effect and that electrostatic effects are of minor importance.Comment: RevTex, 5 pages, 4 figures (matches published version
Gauge Theory for Baryon and Lepton Numbers with Leptoquarks
Models where the baryon (B) and lepton (L) numbers are local gauge symmetries that are spontaneously
broken at a low scale are revisited. We find new extensions of the standard model which predict
the existence of fermions that carry both baryon and lepton numbers (i.e., leptoquarks). The local baryonic
and leptonic symmetries can be broken at a scale close to the electroweak scale and we do not need to
postulate the existence of a large desert to satisfy the experimental constraints on baryon number violating
processes like proton decay
A relativistically covariant version of Bohm's quantum field theory for the scalar field
We give a relativistically covariant, wave-functional formulation of Bohm's
quantum field theory for the scalar field based on a general foliation of
space-time by space-like hypersurfaces. The wave functional, which guides the
evolution of the field, is space-time-foliation independent but the field
itself is not. Hence, in order to have a theory in which the field may be
considered a beable, some extra rule must be given to determine the foliation.
We suggest one such rule based on the eigen vectors of the energy-momentum
tensor of the field itself.Comment: 1 figure. Submitted to J Phys A. 20/05/04 replacement has additional
references and a few minor changes made for clarity. Accepted by J Phys
The Injector Layout of BERLinPro
BERLinPro is an Energy Recovery Linac Project running since 2011 at the HZB in Berlin. A conceptual design report has been published in 2012 [1]. One of the key components of the project is the 100 mA superconducting RF photocathode gun under development at the HZB since 2010. Starting in 2016 the injector will go into operation, providing 6.6 MeV electrons with an emittance well below 1mm mrad and bunches shorter than 5 ps. In 2017 the 50 MeV linac will be set up and full recirculation is planned for 2018. The injector design has been finalized and is described in detail in this paper. Emphasis is further laid on beam dynamics aspects and performance simulations of two different gun cavitie
Crystal Structure of an Anti-Ang2 CrossFab Demonstrates Complete Structural and Functional Integrity of the Variable Domain.
Bispecific antibodies are considered as a promising class of future biotherapeutic molecules. They comprise binding specificities for two different antigens, which may provide additive or synergistic modes of action. There is a wide variety of design alternatives for such bispecific antibodies, including the "CrossMab" format. CrossMabs contain a domain crossover in one of the antigen-binding (Fab) parts, together with the "knobs-and-holes" approach, to enforce the correct assembly of four different polypeptide chains into an IgG-like bispecific antibody. We determined the crystal structure of a hAng-2-binding Fab in its crossed and uncrossed form and show that CH1-CL-domain crossover does not induce significant perturbations of the structure and has no detectable influence on target binding
Shot noise in lithographically patterned graphene nanoribbons
We have investigated shot noise and conductance of multiterminal graphene nanoribbon devices at temperatures down to 50 mK. Away from the charge neutrality point, we find a Fano factor F≈0.4, nearly independent of the charge density. Our shot noise results are consistent with theoretical models for disordered graphene ribbons with a dimensionless scattering strength K0 ≈ 10 corresponding to rather strong disorder. Close to charge neutrality, an increase in F up to ∼0.7 is found, which indicates the presence of a dominant Coulomb gap possibly due to a single quantum dot in the transport gap.Peer reviewe
Dirac Sea Effects on Superfluidity in Nuclear Matter
We study two kinds of Dirac sea effects on the pairing gap in nuclear
matter based on the relativistic Hartree approximation to quantum hadrodynamics
and the Gor'kov formalism. We show that the vacuum fluctuation effect on the
nucleon effective mass is more important than the direct coupling between the
Fermi sea and the Dirac sea due to the pairing interaction. The effects of the
high-momentum cutoff are also discussed.Comment: 11 pages, 3 eps figures included, uses REVTeX (with \tightenlines
- …
