162 research outputs found
The Effect of Volleyball Training in Trunk Symmetry
The present study aims to determine postural deficiencies in volleyball players depending on the period of practice, in the initiation stage. The evaluation of the posture and the angle between the ankle and the trunk was carried out with the mobile app Apecs-AI Posture Evaluation and Correction System®, the symmetry of the trunk with the "Trunk Symmetry" application included in the device's program. The REEDCO Posture Assessment (RPS) rating scale was used to interpret the results. The results reveal that in maintaining postural activity in optimal conditions in volleyball players, it is recommended to ensure symmetrical strength gains through conditioning training and core stabilization training
Improving effectiveness of honeypots: predicting targeted destination port numbers during attacks using J48 algorithm
During recent years, there has been an increase in cyber-crime and cybercriminal activities around the world and as countermeasures, effective attack prevention and detection mechanisms are needed. A popular tool to augment existing attack detection mechanisms is the Honeypot. It serves as a decoy for luring attackers, with the purpose to accumulate essential details about the intruder and techniques used to compromise systems. In this endeavor, such tools need to effectively listen and keep track of ports on hosts such as servers and computers within networks. This paper investigates, analyzes and predicts destination port numbers targeted by attackers in order to improve the effectiveness of honeypots. To achieve the purpose of this paper, the J48 decision tree classifier was applied on a database containing information on cyber-attacks. Results revealed insightful information on key destination port numbers targeted by attackers, in addition to how these targeted ports vary within different regions around the world
A two‐stage Bayesian network model for corporate bankruptcy prediction
We develop a Bayesian network (LASSO-BN) model for firm bankruptcy prediction. We select fnancial ratios via the Least Absolute Shrinkage Selection Operator (LASSO), establish the BN topology, and estimate model parameters. Our empirical results, based on 32,344 US firms from 1961-2018, show that the LASSO-BN model outperforms most alternative methods except the deep neural network. Crucially, the model provides a clear interpretation of its internal functionality by describing the logic of how conditional default probabilities are obtained from selected variables. Thus our model represents a major step towards interpretable machine learning models with strong performance and is relevant to investors and policymakers
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low
Intelligent framework for diagnosis of frozen shoulder using cross sectional survey and case studies
Urinary volatile organic compounds for the detection of prostate cancer
© 2015 Khalid et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states
Dynamic temporary blood facility location-allocation during and post-disaster periods
The key objective of this study is to develop a tool (hybridization or integration of different techniques) for locating the temporary blood banks during and post-disaster conditions that could serve the hospitals with minimum response time. We have used temporary blood centers, which must be located in such a way that it is able to serve the demand of hospitals in nearby region within a shorter duration. We are locating the temporary blood centres for which we are minimizing the maximum distance with hospitals. We have used Tabu search heuristic method to calculate the optimal number of temporary blood centres considering cost components. In addition, we employ Bayesian belief network to prioritize the factors for locating the temporary blood facilities. Workability of our model and methodology is illustrated using a case study including blood centres and hospitals surrounding Jamshedpur city. Our results shows that at-least 6 temporary blood facilities are required to satisfy the demand of blood during and post-disaster periods in Jamshedpur. The results also show that that past disaster conditions, response time and convenience for access are the most important factors for locating the temporary blood facilities during and post-disaster periods
Leveraging analytics to produce compelling and profitable film content
Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user generated content and original content produced by Subscription Video on Demand (SVOD) platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications
- …