28 research outputs found

    Aseismic deformation in the Alps: GPS vs. seismic strain quantification

    No full text
    International audienceNeotectonics of the Western and Central Alps is characterized by ongoing widespread extension in the highest zones of the chain and transcurrent/compressive tectonics at the external limits of the belt. The overall geodetically measured deformations also indicate extension across the Western Alps. There is a good qualitative coherency between seismotectonic and geodetic approaches. Here we attempt to quantify the seismic part of the deformation. The seismic strain is compared to the deformation derived from geodesy. In sub-areas of homogeneous seismic stress/strain, we computed the total seismic moment tensor and related strain tensor. This study provides new quantitative elements about the ongoing geodynamic processes in the alpine belt. The important discrepancies obtained between seismic strains and geodetically-measured deformations raise the issue of aseismic deformation in the Alps, which could be related to elastic loading, creeping and/or a slower ductile-style deformatio

    Quaternary erosion-induced isostatic rebound in the western Alps

    No full text
    International audienceThe high elevation and deep incision of the Alps have traditionally been used as an argument for recent tectonic activity that has elevated the belt and increased erosion rates. Normal faulting and horizontal extension, however, dominate current tectonic activity, and isostatic compensation of thinning crust should lead not to increased but to decreased mean elevations. Here we test the idea that enhanced Quaternary erosion of the Alps and isostatic compensation of the mass removed can account for the distribution of present-day geodetically measured rates of vertical movement in the western Alps. Using geophysical relief and Kuhlemann's estimated average erosion rate for the Alps, we quantify the spatial distribution of erosion and the volume of eroded rock, respectively. From these, we obtain a map of rock eroded within a given time span. The calculated isostatic response of the Alpine lithosphere to erosional unloading for a variety of values of the flexural rigidity of the Alpine lithosphere reaches a maximum of [~]500 m since 1 Ma in the inner Swiss Alps, and vertical movement extends across the entire belt, including peri-Alpine basins. Assuming a steady erosion rate since 1 Ma, this rebound accounts for half of the measured vertical motion of 1.1 mm/yr in the southern Valais. Thus, a significant fraction ([~]50%) of the present-day vertical movement results from the isostatic response to enhanced erosion during Plio-Quaternary tim
    corecore