16,134 research outputs found
Laser-induced thermal acoustics: simple accurate gas measurements
Laser-induced thermal acoustics (LITA), an optical four-wave mixing technique, has been used for sensitive measurement of the sound speed, thermal diffusivity, acoustic damping rate, and complex susceptibility of a gas. In LITA, laser-induced acoustic waves scatter laser light into a coherent, modulated signal beam. A simple expression accurately describes the signal. Atmospheric sound speeds accurate to 0.5% and transport properties accurate to 30% have been measured in a single shot without calibration. LITA spectra have been taken of weak spectral lines of NO2 in concentrations of less than 50 parts in 10^9. Signal reflectivities up to 10^4 are estimated
Bandwidth of linearized electrooptic modulators
Many schemes have been proposed to make high dynamic range analog radio frequency (RF) photonic links by linearizing the transfer function of the link's modulator. This paper studies the degrading effects of finite transit time and optical and electrical velocity dispersion on such linearization schemes. It further demonstrates that much of the lost dynamic range in some modulators may be regained by segmenting and rephasing the RF transmission line
Beam Misalignments and Fluid Velocities in Laser-Induced Thermal Acoustics
Beam misalignments and bulk fluid velocities can influence the time history and intensity of laser-induced thermal acoustics (LITA) signals. A closed-form analytic expression for LITA signals incorporating these effects is derived, allowing the magnitude of beam misalignment and velocity to be inferred from the signal shape. It is demonstrated how instantaneous, nonintrusive, and remote measurement of sound speed and velocity (Mach number) can be inferred simultaneously from homodyne-detected LITA signals. The effects of different forms of beam misalignment are explored experimentally and compared with theory, with good agreement, allowing the amount of misalignment to be measured from the LITA signal. This capability could be used to correct experimental misalignments and account for the effects of misalignment in other LITA measurements. It is shown that small beam misalignments have no influence on the accuracy or repeatability of sound speed measurements with LITA
Laser-induced thermal acoustics (LITA) signals from finite beams
Laser-induced thermal acoustics (LITA) is a four-wave mixing technique that may be employed to measure sound speeds, transport properties, velocities, and susceptibilities of fluids. It is particularly effective in high-pressure gases (>1 bar). An analytical expression for LITA signals is derived by the use of linearized equations of hydrodynamics and light scattering. This analysis, which includes full finite-beam-size effects and the optoacoustic effects of thermalization and electrostriction, predicts the amplitude and the time history of narrow-band time-resolved LITA and broadband spectrally resolved (multiplex) LITA signals. The time behavior of the detected LITA signal depends significantly on the detection solid angle, with implications for the measurement of diffusivities by the use of LITA and the proper physical picture of LITA scattering. This and other elements of the physics of LITA that emerge from the analysis are discussed. Theoretical signals are compared with experimental LITA data
Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics
We study the accuracy and uncertainty of single-shot nonresonant laser-induced thermal acoustics measurements of the speed of sound and the thermal diffusivity in unseeded atmospheric air from electrostrictive gratings as a function of the laser power settings. For low pump energies, the measured speed of sound is too low, which is due to the influence of noise on the numerical data analysis scheme. For pump energies comparable to and higher than the breakdown energy of the gas, the measured speed of sound is too high. This is an effect of leaving the acoustic limit, and instead creating finite-amplitude density perturbations. The measured thermal diffusivity is too large for high noise levels but it decreases below the predicted value for high pump energies. The pump energy where the error is minimal coincides for the speed of sound and for the thermal diffusivity measurements. The errors at this minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically with signal intensity to 0.25% and 5%, respectively
Eavesdropping on the past: An oral history exploration of English and Spanish in contact in Texas\u27 Rio Grande Valley, 1904-1945
This thesis investigates the interaction of English and Spanish L1 communities in the Rio Grande Valley of South Texas from 1904 to 1945 (an era of mass English L1 migration from the Northern United States and Canada to this historically Spanish-speaking region) via analysis of oral interviews that record both language communities’ memories of the era’s social structures. Collectively, the interviews tell the story of the region’s sociocultural and sociolinguistic environment with a view to exploring how members of each community reacted to the presence of the other language during the first years of significant English/Spanish language contact in previously linguistically isolated areas of the Rio Grande Valley. The primary goals of this project are to (1) to explore how the early 1900s South Texan social setting affected speakers of English, Spanish, or both; and in so doing, to (2) pilot a narrative-based model for future historical sociolinguistics research
- …