616 research outputs found
Testing gravity law in the solar system
The predictions of General relativity (GR) are in good agreement with
observations in the solar system. Nevertheless, unexpected anomalies appeared
during the last decades, along with the increasing precision of measurements.
Those anomalies are present in spacecraft tracking data (Pioneer and flyby
anomalies) as well as ephemerides. In addition, the whole theory is challenged
at galactic and cosmic scales with the dark matter and dark energy issues.
Finally, the unification in the framework of quantum field theories remains an
open question, whose solution will certainly lead to modifications of the
theory, even at large distances. As long as those "dark sides" of the universe
have no universally accepted interpretation nor are they observed through other
means than the gravitational anomalies they have been designed to cure, these
anomalies may as well be interpreted as deviations from GR. In this context,
there is a strong motivation for improved and more systematic tests of GR
inside the solar system, with the aim to bridge the gap between gravity
experiments in the solar system and observations at much larger scales. We
review a family of metric extensions of GR which preserve the equivalence
principle but modify the coupling between energy and curvature and provide a
phenomenological framework which generalizes the PPN framework and "fifth
force" extensions of GR. We briefly discuss some possible observational
consequences in connection with highly accurate ephemerides.Comment: Proceedings of Journ\'ees 2010 "Syst\`emes de r\'ef\'erence
spatio-temporels", New challenges for reference systems and numerical
standards in astronom
Properties of simulated Milky Way-mass galaxies in loose group and field environments
We test the validity of comparing simulated field disk galaxies with the
empirical properties of systems situated within environments more comparable to
loose groups, including the Milky Way's Local Group. Cosmological simulations
of Milky Way-mass galaxies have been realised in two different environment
samples: in the field and in environments with similar properties to the Local
Group. Apart from the environments of the galaxies, the samples are kept as
homogeneous as possible with equivalent ranges in last major merger time, halo
mass and halo spin. Comparison of these two samples allow for systematic
differences in the simulations to be identified. Metallicity gradients, disk
scale lengths, colours, magnitudes and age-velocity dispersion relations are
studied for each galaxy in the suite and the strength of the link between these
and environment of the galaxies is studied. The bulge-to-disk ratio of the
galaxies show that these galaxies are less spheroid dominated than many other
simulated galaxies in literature with the majority of both samples being disk
dominated. We find that secular evolution and mergers dominate the spread of
morphologies and metallicity gradients with no visible differences between the
two environment samples. In contrast with this consistency in the two samples
there is tentative evidence for a systematic difference in the velocity
dispersion-age relations of galaxies in the different environments. Loose group
galaxies appear to have more discrete steps in their velocity dispersion-age
relations. We conclude that at the current resolution of cosmological galaxy
simulations field environment galaxies are sufficiently similar to those in
loose groups to be acceptable proxies for comparison with the Milky Way
provided that a similar assembly history is considered.Comment: 16 pages, 11 figures, abstract abridged for arXiv. Accepted for
publication in Astronomy & Astrophysic
Back-action cancellation in interferometers by quantum locking
We show that back-action noise in interferometric measurements such as
gravitational-waves detectors can be completely suppressed by a local control
of mirrors motion. An optomechanical sensor with an optimized measurement
strategy is used to monitor mirror displacements. A feedback loop then
eliminates radiation-pressure effects without adding noise. This very efficient
technique leads to an increased sensitivity for the interferometric
measurement, which becomes only limited by phase noise. Back-action
cancellation is furthermore insensitive to losses in the interferometer.Comment: 4 pages, 3 figures, RevTe
Quantum fluctuations for drag free geodesic motion
The drag free technique is used to force a proof mass to follow a geodesic
motion. The mass is protected from perturbations by a cage, and the motion of
the latter is actively controlled to follow the motion of the proof mass. We
present a theoretical analysis of the effects of quantum fluctuations for this
technique. We show that a perfect drag free operation is in principle possible
at the quantum level, in spite of the back action exerted on the mass by the
position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change
Beating quantum limits in interferometers with quantum locking of mirrors
The sensitivity in interferometric measurements such as gravitational-wave
detectors is ultimately limited by quantum noise of light. We discuss the use
of feedback mechanisms to reduce the quantum effects of radiation pressure.
Recent experiments have shown that it is possible to reduce the thermal motion
of a mirror by cold damping. The mirror motion is measured with an
optomechanical sensor based on a high-finesse cavity, and reduced by a feedback
loop. We show that this technique can be extended to lock the mirror at the
quantum level. In gravitational-waves interferometers with Fabry-Perot cavities
in each arms, it is even possible to use a single feedback mechanism to lock
one cavity mirror on the other. This quantum locking greatly improves the
sensitivity of the interferometric measurement. It is furthermore insensitive
to imperfections such as losses in the interferometer
On testing the violation of the Clausius inequality in nanoscale electric circuits
The Clausius inequality, one of the classical formulations of the second law,
was recently found to be violated in the quantum regime. Here this result is
formulated in the context of a mesoscopic or nanoscale linear RLC circuit
interacting with a thermal bath. Previous experiments in this and related
fields are analyzed and possibilities of experimental detection of the
violation are pointed out. It is discussed that recent experiments reached the
range of temperatures, where the effect should be visible, and that a part of
the proposal was already confirmed.Comment: 5 pages revtex 4. No figure
Pioneer 10 data analysis: Investigation on periodic anomalies
International audienceThe Pioneer Anomaly refers to the difference between the expected theoretical tra jectory of the Pioneer 10 and 11 spacecrafts and the observed tra jectory through Doppler measurements. It has been interpreted by the Jet Propulsion Laboratory (JPL) as a constant anomalous acceleration (Anderson et al. 2002). For this analysis, the Groupe Anomalie Pioneer (GAP) composed of several french laboratories has developped a specific tra jectography software, ODYSSEY, which enables to test different anomaly models. The paper will present, after a brief description of the software and the implemented models, the last results obtained: in addition to the constant anomaly, time dependent signatures of the anomaly have been noticed which can be described geometrically. The fit of the Pioneer 10 data with these new models yields a reduction of the standard deviation of the residual by a factor 2 with respect to the simple constant anomaly
Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies
This paper reports the results of an analysis of the Doppler tracking data of
Pioneer probes which did show an anomalous behaviour. A software has been
developed for the sake of performing a data analysis as independent as possible
from that of J. Anderson et al. \citep{anderson}, using the same data set. A
first output of this new analysis is a confirmation of the existence of a
secular anomaly with an amplitude about 0.8 nms compatible with that
reported by Anderson et al. A second output is the study of periodic variations
of the anomaly, which we characterize as functions of the azimuthal angle
defined by the directions Sun-Earth Antenna and Sun-Pioneer. An
improved fit is obtained with periodic variations written as the sum of a
secular acceleration and two sinusoids of the angles and .
The tests which have been performed for assessing the robustness of these
results are presented.Comment: 13 pages, 6 figures, minor amendment
- …