10,252 research outputs found

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as tt\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    Columbus' New Water Supply Dam and Reservoir

    Get PDF

    Decay Process for Three - Species Reaction - Diffusion System

    Full text link
    We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form A+B+CDA+B+C\to D. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.Comment: 6 pages, 3 figures, Late

    Compact magneto-optical sources of slow atoms

    Full text link
    Three different configurations of compact magneto-optical sources of slow Rb atoms(LVIS, 2D(+)-MOT and 2D-MOT) were compared with each other at fixed geometry of cooling laser beams. A precise control of the intensity balances between the four separate transverse cooling laser beams provided a total continuous flux of cold atoms from the LVIS and 2D(+)-MOT sources about 8x10^9 atoms/s at total laser power of 60 mW. The flux was measured directly from the loading rate of a 3D-MOT, placed 34 cm downstream from the sources. Average velocities of the cooled atomic beam for the LVIS and 2D(+)-MOT sources were about 8.5 m/s and 11 m/s respectively. An essential advantage of the compact magneto-optical sources is that their background flux of thermal atoms is two to three orders of the magnitude smaller than the flux of slow atoms.Comment: 12 pages, 10 figures. to be published in Optics Communication

    Lepton flavour violation in The Little Higgs model

    Get PDF
    Little Higgs models with T-parity have a new source of lepton flavour violation. In this paper we consider the anomalous magnetic moment of the muon \gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present experimental constraints of \mutoeg is much more useful to constrain the new sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included

    Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels

    Full text link
    © 2014 American Chemical Society. The nanoscale spacing between a tethered lipid bilayer membrane (tBLM) and its supporting gold electrode can be utilized to determine the polarity selectivity of the conduction of ion channels and ion carriers embedded in a membrane. The technique relies upon a bias voltage sequestering or eliminating ions, of a particular polarity, into or out of the aqueous electrolyte region between the gold electrode and the tethered membrane. A demonstration is given, using ac swept frequency impedance spectrometry, of the bias polarity dependence of the ionophore conductance of gramicidin A, a cationic selective channel, and valinomycin, a potassium ion selective carrier. We further use pulsed amperometry to show that the intrinsic voltage dependence of the ion conduction is actually selective of the polarity of the transported ion and not simply of the direction of the ionic current flow
    corecore