917 research outputs found

    CONJOINT ANALYSIS OF GROUNDWATER PROTECTION PROGRAMS

    Get PDF
    Three conjoint models-a traditional ratings model, a ratings difference specification, and a binary response model-were used to value groundwater protection program alternatives. The last, which is virtually identical to a dichotomous choice contingent valuation specification, produced the smallest value estimates. This suggests that the conjoint model is very sensitive to model specifications and that traditional conjoint models may overestimate economic value because many respondents are not in the market for the commodity being valued.Resource /Energy Economics and Policy,

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Causality and Cirel'son bounds

    Get PDF
    An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlations. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirel'son bound for the CHSH expression, and we derive a new Cirel'son type bound for qutrits. We discuss in detail the interpretation of our approach.Comment: 5 page

    Tsirelson's bound and supersymmetric entangled states

    Full text link
    A superqubit, belonging to a (21)(2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more nonlocal than ordinary qubits, we construct a class of two-superqubit entangled states as a nonlocal resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric (3) Modified Rogers. In cases (1) and (2) the winning probability reaches the Tsirelson bound pwin=cos2π/80.8536p_{win}=\cos^2{\pi/8}\simeq0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin0.9265p_{win}\simeq0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.Comment: Updated to match published version. Minor modifications. References adde

    Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas

    Full text link
    We show lower bounds of Ω(n)\Omega(\sqrt{n}) and Ω(n1/4)\Omega(n^{1/4}) on the randomized and quantum communication complexity, respectively, of all nn-variable read-once Boolean formulas. Our results complement the recent lower bound of Ω(n/8d)\Omega(n/8^d) by Leonardos and Saks and Ω(n/2Ω(dlogd))\Omega(n/2^{\Omega(d\log d)}) by Jayram, Kopparty and Raghavendra for randomized communication complexity of read-once Boolean formulas with depth dd. We obtain our result by "embedding" either the Disjointness problem or its complement in any given read-once Boolean formula.Comment: 5 page

    Berry phase for a spin 1/2 in a classical fluctuating field

    Full text link
    The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with a adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio

    Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development

    Get PDF
    The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOE’s strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC

    Substituting a qubit for an arbitrarily large number of classical bits

    Full text link
    We show that a qubit can be used to substitute for an arbitrarily large number of classical bits. We consider a physical system S interacting locally with a classical field phi(x) as it travels directly from point A to point B. The field has the property that its integrated value is an integer multiple of some constant. The problem is to determine whether the integer is odd or even. This task can be performed perfectly if S is a qubit. On the otherhand, if S is a classical system then we show that it must carry an arbitrarily large amount of classical information. We identify the physical reason for such a huge quantum advantage, and show that it also implies a large difference between the size of quantum and classical memories necessary for some computations. We also present a simple proof that no finite amount of one-way classical communication can perfectly simulate the effect of quantum entanglement.Comment: 8 pages, LaTeX, no figures. v2: added result on entanglement simulation with classical communication; v3: minor correction to main proof, change of title, added referenc

    Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities

    Full text link
    Quantum theory imposes a strict limit on the strength of non-local correlations. It only allows for a violation of the CHSH inequality up to the value 2 sqrt(2), known as Tsirelson's bound. In this note, we consider generalized CHSH inequalities based on many measurement settings with two possible measurement outcomes each. We demonstrate how to prove Tsirelson bounds for any such generalized CHSH inequality using semidefinite programming. As an example, we show that for any shared entangled state and observables X_1,...,X_n and Y_1,...,Y_n with eigenvalues +/- 1 we have | + <X_2 Y_1> + + + ... + - | <= 2 n cos(pi/(2n)). It is well known that there exist observables such that equality can be achieved. However, we show that these are indeed optimal. Our approach can easily be generalized to other inequalities for such observables.Comment: 9 pages, LateX, V2: Updated reference [3]. To appear in Physical Review
    corecore