88 research outputs found

    The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development

    Get PDF
    Mammalian G9a is a histone H3 Lys-9 (H3–K9) methyltransferase localized in euchromatin and acts as a co-regulator for specific transcription factors. G9a is required for proper development in mammals as g9a(−)/g9a(−) mice show growth retardation and early lethality. Here we describe the cloning, the biochemical and genetical analyses of the Drosophila homolog dG9a. We show that dG9a shares the structural organization of mammalian G9a, and that it is a multi-catalytic histone methyltransferase with specificity not only for lysines 9 and 27 on H3 but also for H4. Surprisingly, it is not the H4–K20 residue that is the target for this methylation. Spatiotemporal expression analyses reveal that dG9a is abundantly expressed in the gonads of both sexes, with no detectable expression in gonadectomized adults. In addition we find a low but clearly observable level of dG9a transcript in developing embryos, larvae and pupae. Genetic and RNAi experiments reveal that dG9a is involved in ecdysone regulatory pathways

    Modeling a New Water Channel That Allows SET9 to Dimethylate p53

    Get PDF
    SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur

    Lysine120 Interactions with p53 Response Elements can Allosterically Direct p53 Organization

    Get PDF
    p53 can serve as a paradigm in studies aiming to figure out how allosteric perturbations in transcription factors (TFs) triggered by small changes in DNA response element (RE) sequences, can spell selectivity in co-factor recruitment. p53-REs are 20-base pair (bp) DNA segments specifying diverse functions. They may be located near the transcription start sites or thousands of bps away in the genome. Their number has been estimated to be in the thousands, and they all share a common motif. A key question is then how does the p53 protein recognize a particular p53-RE sequence among all the similar ones? Here, representative p53-REs regulating diverse functions including cell cycle arrest, DNA repair, and apoptosis were simulated in explicit solvent. Among the major interactions between p53 and its REs involving Lys120, Arg280 and Arg248, the bps interacting with Lys120 vary while the interacting partners of other residues are less so. We observe that each p53-RE quarter site sequence has a unique pattern of interactions with p53 Lys120. The allosteric, DNA sequence-induced conformational and dynamic changes of the altered Lys120 interactions are amplified by the perturbation of other p53-DNA interactions. The combined subtle RE sequence-specific allosteric effects propagate in the p53 and in the DNA. The resulting amplified allosteric effects far away are reflected in changes in the overall p53 organization and in the p53 surface topology and residue fluctuations which play key roles in selective co-factor recruitment. As such, these observations suggest how similar p53-RE sequences can spell the preferred co-factor binding, which is the key to the selective gene transactivation and consequently different functional effects

    Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells

    Get PDF
    RUNX1 encodes a DNA binding subunit of the core-binding transcription factors and is frequently mutated in acute leukemia, therapy-related leukemia, myelodysplastic syndrome, and chronic myelomonocytic leukemia. Mutations in RUNX1 are thought to confer upon hematopoietic stem cells (HSCs) a pre-leukemic state, but the fundamental properties of Runx1 deficient pre-leukemic HSCs are not well defined. Here we show that Runx1 deficiency decreases both apoptosis and proliferation, but only minimally impacts the frequency of long term repopulating HSCs (LT-HSCs). It has been variously reported that Runx1 loss increases LT-HSC numbers, decreases LT-HSC numbers, or causes age-related HSC exhaustion. We attempt to resolve these discrepancies by showing that Runx1 deficiency alters the expression of several key HSC markers, and that the number of functional LT-HSCs varies depending on the criteria used to score them. Finally, we identify genes and pathways, including the cell cycle and p53 pathways that are dysregulated in Runx1 deficient HSCs

    Bioinformatic Analysis and Post-Translational Modification Crosstalk Prediction of Lysine Acetylation

    Get PDF
    Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function

    Dynamic protein methylation in chromatin biology

    Get PDF
    Post-translational modification of chromatin is emerging as an increasingly important regulator of chromosomal processes. In particular, histone lysine and arginine methylation play important roles in regulating transcription, maintaining genomic integrity, and contributing to epigenetic memory. Recently, the use of new approaches to analyse histone methylation, the generation of genetic model systems, and the ability to interrogate genome wide histone modification profiles has aided in defining how histone methylation contributes to these processes. Here we focus on the recent advances in our understanding of the histone methylation system and examine how dynamic histone methylation contributes to normal cellular function in mammals

    Human EHMT2/G9a activates p53 through methylation-independent mechanism

    Full text link
    p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.258

    Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    Get PDF
    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies
    • …
    corecore