1,218 research outputs found
Quantum limitations on superluminal propagation
Unstable systems such as media with inverted atomic population have been
shown to allow the propagation of analytic wavepackets with group velocity
faster than that of light, without violating causality. We illuminate the
important role played by unstable modes in this propagation, and show that the
quantum fluctuations of these modes, and their unitary time evolution, impose
severe restrictions on the observation of superluminal phenomena.Comment: RevTeX 4 page
Probe modeling for millimeter-wave integrated-circuit horn antennas
Integrated-circuit probe-excited horn-antenna arrays etched in silicon
are well developed. They are a very promising class of antenna arrays for
milli-meter and submillimeter applications. Further development of this technology
involves integrating mixers and amplifiers into the antenna arrays. In
an effort to develop an antenna-mixer array based on the existing technology,
various antenna probes inside the pyramidal horns have been examined on scaled
model-horns at the microwave frequencies. In this paper, modeling results and
design principles of these antenna probes have been presented, which include the
resonant impedance, the operating frequency, and the bandwidth of the horn antennas.
These measurement results provide a guideline in designing probes for
millimeter/submillimeter-wave integrated-circuit horn-antenna-mixer arrays
Signal velocity, causality, and quantum noise in superluminal light pulse propagation
We consider pulse propagation in a linear anomalously dispersive medium where
the group velocity exceeds the speed of light in vacuum (c) or even becomes
negative. A signal velocity is defined operationally based on the optical
signal-to-noise ratio, and is computed for cases appropriate to the recent
experiment where such a negative group velocity was observed. It is found that
quantum fluctuations limit the signal velocity to values less than c.Comment: 4 Journal pages, 3 figure
Quasiparticle spectrum of d-wave superconductors in the mixed state: a large Fermi-velocity anisotropy study
The quasiparticle spectrum of a two-dimensional d-wave superconductor in the
mixed state, H_c1 << H << H_c2, is studied for large values of the ``anisotropy
ratio'' alpha_D = v_F/v_Delta. For a square vortex lattice rotated by 45
degrees from the quasiparticle anisotropy axes (and the usual choice of
Franz--Tesanovic singular gauge transformation) we determine essential features
of the band structure asymptotically for large alpha_D, using an effective
one-dimensional model, and compare them to numerical calculations. We find that
several features of the band structure decay to zero exponentially fast for
large alpha_D. Using a different choice of singular gauge transformation, we
obtain a different band structure, but still find qualitative agreement between
the 1D and full 2D calculations. Finally, we distort the square lattice into a
non-Bravais lattice. Both the one- and two-dimensional numerical calculations
of the energy spectra show a gap around zero-energy, with our gauge choice, and
the two excitation spectra agree reasonably well.Comment: 14 pages, 13 figures, revte
A terahertz grid frequency doubler
We present a 144-element terahertz quasi-optical grid frequency doubler. The grid is a planar structure with bow-tie antennas as a unit cell, each loaded with a planar Schottky diode. The maximum output power measured for this grid is 24 mW at 1 THz for 3.1-ÎĽs 500-GHz input pulses with a peak input power of 47 W. An efficiency of 0.17% for an input power of 6.3 W and output power of 10.8 mW is measured. To date, this is the largest recorded output power for a multiplier at terahertz frequencies. Input and output tuning curves are presented and an output pattern is measured and compared to theory
Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011):9148-9153, doi:10.1073/pnas.1019090108.Camouflage is a widespread phenomenon throughout nature and an important
anti-predator tactic in natural selection. Many visual predators have keen color
perception, thus camouflage patterns should provide some degree of color matching in
addition to other visual factors such as pattern, contrast, and texture. Quantifying
camouflage effectiveness in the eyes of the predator is a challenge from the
perspectives of both biology and optical imaging technology. Here we take advantage
of Hyperspectral Imaging (HSI), which records full-spectrum light data, to
simultaneously visualize color match and pattern match in the spectral and the spatial
domains, respectively. Cuttlefish can dynamically camouflage themselves on any
natural substrate and, despite their colorblindness, produce body patterns that appear
to have high-fidelity color matches to the substrate when viewed directly by humans
or with RGB images. Live camouflaged cuttlefish on natural backgrounds were
imaged using HSI, and subsequent spectral analysis revealed that most reflectance
spectra of individual cuttlefish and substrates were similar, rendering the color match
possible. Modeling color vision of potential di- and tri-chromatic fish predators of
cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged
cuttlefish show good color match as well as pattern match in the eyes of fish predators.
These findings (i) indicate the strong potential of HSI technology to enhance studies
3
of biological coloration, and (ii) provide supporting evidence that cuttlefish can
produce color-coordinated camouflage on natural substrates despite lacking color
vision.We gratefully acknowledge financial support from the
National Science Council of Taiwan NSC-98-2628-B-007-001-MY3 to CCC, from
the Network Science Center at West Point and the Army Research Office to JKW,
from the NDSEG Fellowship to JJA, and from ONR grant N000140610202 to RTH
Superoscillations and tunneling times
It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To exemplify that, we
consider a toy model which allows for a wave packet to travel, in zero time and
negligible distortion a distance arbitrarily larger than the width of the wave
packet. The peak is shown to result from a superoscillatory superposition at
the tail. Similar reasoning applies to the dwell time.Comment: 12 page
A 100-element HBT grid amplifier
A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBTs and free space. Two independent measurements, one with focusing lenses and the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return losses were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multimode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30° were amplified with less than a 3-dB drop in gain
- …