525 research outputs found

    Scatterometer response and wavelet transformation analysis of water wave surface

    Get PDF
    We present an application of wavelet transform to obtain instantaneous. The results are discussed for an interpretation of backscattered radar response by water surface states .Nous présentons une application de la transformation en ondelettes pour obtenir la caractérisation temps-fréquence de profils temporels des hauteurs d'eau dans un bassin de simulation. Les résultats sont discutés dans le but d'interpréter l'interaction d'un rayonnement électromagnétique incident avec les ondes de surfaces libre

    The GNSS-R Eddy Experiment II: L-band and Optical Speculometry for Directional Sea-Roughness Retrieval from Low Altitude Aircraft

    Full text link
    We report on the retrieval of directional sea-roughness (the full directional mean square slope, including MSS, direction and isotropy) through inversion of Global Navigation Satellite System Reflections (GNSS-R) and SOlar REflectance Speculometry (SORES)data collected during an experimental flight at 1000 m. The emphasis is on the utilization of the entire Delay-Doppler Map (for GNSS-R) or Tilt Azimuth Map (for SORES) in order to infer these directional parameters. Obtained estimations are analyzed and compared to Jason-1 measurements and the ECMWF numerical weather model.Comment: Proceedings from the 2003 Workshop on Oceanography with GNSS Reflections, Barcelona, Spain, 200

    New Evidence of Holocene Mass Wasting Events in Recent Volcanic Lakes from the French Massif Central (Lakes Pavin, Montcineyre and Chauvet) and Implications for Natural Hazards

    Get PDF
    International audienceHigh-resolution seismic profiling (12 kHz) surveys combined with sediment cores, radiocarbon dating, tephrochronology and multibeam bathymetry (when available) allow documentation of a range of Holocene mass wasting events in nearby contrasting lakes of volcanic origin in the French Massif Central (45°N, 2°E): two deep maar lakes (Pavin and Chauvet) and a shallow lake (Montcineyre) dammed by the growth of a volcano. In these lacustrine environments dominated by authigenic sedimentation, recent slide scars, acoustically transparent to chaotic lens-shaped bodies, slump deposits or reworked regional tephra layers suggest that subaqueous mass wasting processes may have been favoured by gas content in the sediments and lake level changes. While these events may have had a limited impact in both lakes Chauvet and Montcineyre, they apparently favoured the development of lacustrine meromicticity in maar Lake Pavin along with possible subaerial debris flows resulting from crater outburst events

    ROWS wave spectral data collected in SAXON-FPN, November 1990

    Get PDF
    High-resolution directional wave spectra obtained with the NASA Ku-band radar ocean wave spectrometer (ROWS) on the Naval Research Laboratory P-3 aircraft during SAXON-FPN (SAR and X-Band Ocean Nonlinearities Experiment-Forschungsplattform Nordsee) experiments in the North Sea in November 1990 are presented. This experiment was the first in which the ROWS was operated with its new pc-based high-speed digital data acquisition system

    Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy

    Get PDF
    International audienceTwo lacustrine sediment cores from Lake Ledro in northern Italy were studied to produce chronologies of floodevents for the past 10 000 yr. For this purpose, we have developed an automatic method that objectively identifies the sedimentary imprint of river floods in the downstream lake basin. The method was based on colour data extracted from processed core photographs, and the count data were analysed to capture the flood signal. Flood frequency and reconstructed sedimentary dynamics were compared with lake-level changes and pollen inferred vegetation dynamics. The results suggest a record marked by low flood frequency during the early and middle Holocene (10 000–4500 cal BP). Only modest increases during short intervals are recorded at ca. 8000, 7500, and 7100 cal BP. After 4500–4000 cal BP, the record shows a shift toward increased flood frequency. With the exception of two short intervals around 2900–2500 and 1800–1400 cal BP, which show a slightly reduced number of floods, the trend of increasing flood frequency prevailed until the 20th century, reaching a maximum between the 16th and the 19th centuries. Brief-flood frequency increases recorded during the early and middle Holocene can be attributed to climatic oscillations. On a centennial time scale, major changes in flood frequency, such as those observed after ca. 4500/4000 and 500 cal BP, can be attributed to large-scale climatic changes such as the Neo-glacial and Little Ice Age, which are under orbital and possibly solar control. However, in the Bronze Age and during the Middle Ages and modern times, forest clearing and land use probably partially control the flood activity

    Fertilité et cancer du sein : nouvelles options

    Get PDF

    FluxEngine: A Flexible Processing System for Calculating Atmosphere–Ocean Carbon Dioxide Gas Fluxes and Climatologies

    Get PDF
    The air–sea flux of greenhouse gases [e.g., carbon dioxide (CO2)] is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher-resolution calcu- lations of these gas fluxes are required if researchers are to fully understand and predict future climate. Satellite Earth observation is able to provide large spatial-scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific com- munity. Fortunately, the development of cloud computing can provide a solution. This paper describes an open-source air–sea CO2 flux processing toolbox called the ‘‘FluxEngine,’’ designed for use on a cloud- computing infrastructure. The toolbox allows users to easily generate global and regional air–sea CO2 flux data from model, in situ, and Earth observation data, and its air–sea gas flux calculation is user configurable. Its current installation on the Nephalae Cloud allows users to easily exploit more than 8 TB of climate-quality Earth observation data for the derivation of gas fluxes. The resultant netCDF data output files contain .20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, which verifies the air–sea CO2 flux calculations; demon- strates the use of the tools for studying global and shelf sea air–sea fluxes; and describes future developments
    • 

    corecore