22 research outputs found

    Grain zinc and yield responses of two rice varieties to zinc biofortification and water management

    Get PDF
    Zinc (Zn) biofortification can improve grain yield and nutritional quality in rice, but its effectiveness is subject to agronomic practices and other factors. In a previous study, the application of Zn to soil enhanced grain Zn in lowland rice in well-drained and waterlogged soil, whereas grain Zn in upland rice increased only in well-drained soil. This new study explores the hypothesis that the application of foliar Zn can enhance grain Zn in upland and lowland rice grown under waterlogged and well-drained conditions. Two rice varieties, CNT1 (wetland rice) and KH CMU (upland rice) were grown in containers in waterlogged or well-drained soil with three Zn treatments (no Zn, soil Zn and foliar Zn). For the soil Zn treatment, 50 kg ZnSO4 ha−1 was applied to the soil before transplanting. For the foliar treatment, 0.5% ZnSO4 (equivalent to 900 L ha−1) was applied at booting and repeated at flowering and milky growth stages. Grain yield in CNT1 was 15.9% higher in the waterlogged than in the well-drained plants, but the water regime had no effect on grain yield in KH CMU. Grain Zn concentration in CNT1 increased from 19.5% to 32.6% above the no Zn control when plants were applied with soil or foliar Zn. In KH CMU, there was an interaction between the water regime and Zn treatment. Application of foliar Zn increased grain Zn by 44.6% in well-drained and 14.7% in waterlogged soil. The results indicate strong interaction effects between variety, water regime and Zn fertilizer application on Zn biofortification in rice. Thus, the selection of rice varieties and growing conditions should be considered in order for producers to achieve desirable outcomes from high grain Zn concentrations

    Ultrastructure of adhesive device in fly in families Calliphoridae, Muscidae and Sarcophagidae, and their implication as mechanical carriers of pathogens

    No full text
    Abstract The ultrastructure of adhesive device or the pulvilli, pad-like structure between the tarsal claws of the legs, is presented in the blowfly (Calliphoridae), housefly and relatives (Muscidae), and flesh fly (Sarcophagidae) through scanning electron microscopy. The blowfly species were Chrysomya chani, Chrysomya nigripes, Chrysomya pinguis, and Chrysomya villeneuvi; while those of the housefly and relatives were Musca domestica and Hydrotaea chalcogaster, respectively. Fresh fly species included Boettcherisca peregrina and Liosarcophaga dux. Numerous tenent setae were observed on the ventral side of the pulvilli. Two features of the tip of the tenent setae were found as a spatula-like (in C. chani, C. pinguis, C. nigripes, M. domestica, H. chalcogaster, B. peregrina, and L. dux) and spoon-like tip (in C. villeneuvi). Transmission electron microscopy of the tenent setae in M. domestica revealed the electron-lucent centrally located, suggesting an adhesive substance. These results provided anatomical information that allow us to not only understand the successful attachment of flies to smooth surfaces but also clarify their role as a mechanical carrier of microorganisms
    corecore