6,130 research outputs found

    Immobilization of proteins in silica gel: Biochemical and biophysical properties

    Get PDF
    The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques

    Manual de implantação do treino e visita (T&V).

    Get PDF
    A visão sobre transferência de tecnologia na Embrapa; A metodologia treino e visita (T&V); O treino e visita em sua forma original; Adaptação do treino e visita para o Brasil; Consolidação do T&V soja/grãos - a experiência da Embrapa Soja; Programa de profissionalização do produtor rural (PPRR) da COPACOL; Projeto grãos da EMATER-Paraná; A aplicação da metodologia em diferentes projetos; Projeto T&V café; Projeto T&V saúde, alimentação e geração de renda; Projeto T&V girassol; Projeto T&V pecuária de corte e de leite no Paraná; Projeto T&V sementes; Projeto T&V grãos no Rio Grande do Sul; Estratégias para a implantação do T&V; Definição do foco; Criação do grupo gestor; Criação do comitê técnico; Pré-requisitos para a implantação do T&V; Anexo 1 - Modelo de relatório do T&V grãos - safra 2002/03; Anexo 2 - Modelo de relatório do T&V - saúde, alimentação e geração de renda; Anexo 3 - Modelo de marco zero do Projeto Grãos/EMATER-PR.bitstream/item/80261/1/Manual-de-implantacao-do-treino-e-visita-V-T.pd

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore