2,737 research outputs found
b-quark decay in the collinear approximation
The semileptonic decay of a b-quark, b--> c l nu, is considered in the
relativistic limit where the decay products are approximately collinear.
Analytic results for the double differential lepton energy distributions are
given for finite charm-quark mass. Their use for the fast simulation of
isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.
Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam
This Letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rates and energy spectra of charged current ν_μ interactions are compared in two detectors located along the beam axis at distances of 1 and 735 km. With 1.27×10^(20) 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336±14 events. The data are consistent with ν_μ disappearance via oscillations with Δm_(32)^2|=2.74_(-0.26)^(+0.44)×10^(-3) eV^2 and sin^2(2θ_(23))>0.87 (68% C.L.)
Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses
An analysis is given of thermoelastic noise (thermal noise due to
thermoelastic dissipation) in finite sized test masses of laser interferometer
gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively
planned for LIGO-II and plausible beam-spot radii, the increase is less than or
of order 10 per cent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noise (noise associated
with dissipation which is homogeneous and described by an imaginary part of the
Young's modulus) in finite sized test masses. Correction of these errors
increases the homogeneous thermal noise by less than or of order 5 per cent for
LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review
First observations of separated atmospheric ν_μ and ν̅ _μ events in the MINOS detector
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a
depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first
MINOS observations of ν_μ and ν̅ _μ charged-current atmospheric neutrino interactions based on an
exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the
Monte Carlo expectation in the absence of neutrino oscillations, giving R^(data)_(up/down/R^(MC)_(up/down) =
0:62^(+0.19)_(0:14)(stat.) ± 0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions
excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of
the observed muons in the 1.3 T MINOS magnetic field ν_μ and ν̅ _μ interactions are separated. The ratio of
ν̅ _μ to ν_μ events in the data is compared to the Monte Carlo expectation assuming neutrinos and
antineutrinos oscillate in the same manner, giving R^(data)_(ν_μ/ν̅ _μ) / R^(MC)_(ν_μ/ν̅ _μ) = 0.96^(+0:38)_(0.27)(stat.) ± 0.15(sys.), where
the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first
direct observation of atmospheric neutrino interactions separately for ν_μ and ν̅ _μ
Using Full Information When Computing Modes of Post-Newtonian Waveforms From Inspiralling Compact Binaries in Circular Orbit
The increasing sophistication and accuracy of numerical simulations of
compact binaries (especially binary black holes) presents the opportunity to
test the regime in which post-Newtonian (PN) predictions for the emitted
gravitational waves are accurate. In order to confront numerical results with
those of post-Newtonian theory, it is convenient to compare multipolar
decompositions of the two waveforms. It is pointed out here that the individual
modes can be computed to higher post-Newtonian order by examining the radiative
multipole moments of the system, rather than by decomposing the 2.5PN
polarization waveforms. In particular, the dominant (l = 2, m = 2) mode can be
computed to 3PN order. Individual modes are computed to as high a
post-Newtonian order as possible given previous post-Newtonian results.Comment: 15 page
Gravitational radiation from collapsing magnetized dust
In this article we study the influence of magnetic fields on the axial
gravitational waves emitted during the collapse of a homogeneous dust sphere.
We found that while the energy emitted depends weakly on the initial matter
perturbations it has strong dependence on the strength and the distribution of
the magnetic field perturbations. The gravitational wave output of such a
collapse can be up to an order of magnitude larger or smaller calling for
detailed numerical 3D studies of collapsing magnetized configurations
Measurement of the B Semileptonic Branching Fraction with Lepton Tags
We have used the CLEO II detector and 2.06fb^(-1) of ϒ(4S) data to measure the B-meson semileptonic branching fraction. The B→Xeν momentum spectrum was obtained over nearly the full momentum range by using charge and kinematic correlations in events with a high-momentum lepton tag and an additional electron. We find B(B→Xeν) = (10.49±0.17±0.43)%, with overall systematic uncertainties less than those of untagged single-lepton measurements. We use this result to calculate the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V_(cb) and to set an upper limit on the fraction of ϒ(4S) decays to final states other than BB̅
Search for color-suppressed B hadronic decay processes at the Υ(4S) resonance
Using 3.1fb^(-1) of data accumulated at the Υ(4S) by the CLEO-II detector, corresponding to 3.3×10^6 BB̅ pairs, we have searched for the color-suppressed B hadronic decay processes B^(0) → D^(0)(D^(*0))X^0, where X^0 is a light neutral meson π^0, ρ^0, η, η′ or ω. The D^(*0) mesons are reconstructed in D^(*0) → D^(0)π^(0) and the D^0 mesons in D^(0) → K^(-)π^(+), K^(-)π^(+)π^(0) and K^(-)π^(+)π^(+)π^(-) decay modes. No obvious signal is observed. We set 90% C.L. upper limits on these modes, varying from 1.2×10^(-4) for B^(0) → D^(0)π^(0) to 1.9×10^(-3) for B^(0) → D^(*0)η′
Lattice Heavy Quark Effective Theory and the Isgur-Wise function
We compute the Isgur-Wise function using heavy quark effective theory
formulated on the lattice. The non-relativistic kinetic energy term of the
heavy quark is included to the action as well as terms remaining in the
infinite quark mass limit. The classical velocity of the heavy quark is
renormalized on the lattice and we determine the renormalized velocity
non-perturbatively using the energy-momentum dispersion relation. The slope
parameter of the Isgur-Wise function at zero recoil is obtained at
on a lattice for three values of .Comment: 14 pages of A4 format and 8 figures in one uuencoded postscript fil
Searches for New Quarks and Leptons Produced in Z-Boson Decay
We have searched for events with new-particle topologies in 390 hadronic Z decays with the Mark II detector at the SLAC Linear Collider. We place 95%-confidence-level lower limits of 40.7 GeV/c^2 for the top-quark mass, 42.0 GeV/c^2 for the mass of a fourth-generation charge - 1/3 quark, and 41.3 GeV/c^2 for the mass of an unstable Dirac neutral lepton
- …