28,411 research outputs found
Baryon loading and the Weibel instability in gamma-ray bursts
The dynamics of two counter-streaming electron-positron-ion unmagnetized
plasma shells with zero net charge is analyzed in the context of magnetic field
generation in GRB internal shocks due to the Weibel instability. The effects of
large thermal motion of plasma particles, arbitrary mixture of plasma species
and space charge effects are taken into account. We show that, although thermal
effects slow down the instability, baryon loading leads to a non-negligible
growth rate even for large temperatures and different shell velocities, thus
guaranteeing the robustness and the occurrence of the Weibel instability for a
wide range of scenarios.Comment: 6 pages, 4 figures. Accepted for publication in MNRA
Dynamical birefringence: Electron-hole recollisions as probes of Berry curvature
The direct measurement of Berry phases is still a great challenge in
condensed matter systems. The bottleneck has been the ability to adiabatically
drive an electron coherently across a large portion of the Brillouin zone in a
solid where the scattering is strong and complicated. We break through this
bottleneck and show that high-order sideband generation (HSG) in semiconductors
is intimately affected by Berry phases. Electron-hole recollisions and HSG
occur when a near-band gap laser beam excites a semiconductor that is driven by
sufficiently strong terahertz (THz)-frequency electric fields. We carried out
experimental and theoretical studies of HSG from three GaAs/AlGaAs quantum
wells. The observed HSG spectra contain sidebands up to the 90th order, to our
knowledge the highest-order optical nonlinearity observed in solids. The
highest-order sidebands are associated with electron-hole pairs driven
coherently across roughly 10% of the Brillouin zone around the \Gamma point.
The principal experimental claim is a dynamical birefringence: the sidebands,
when the order is high enough (> 20), are usually stronger when the exciting
near-infrared (NIR) and the THz electric fields are polarized perpendicular
than parallel; the sideband intensities depend on the angles between the THz
field and the crystal axes in samples with sufficiently weak quenched disorder;
and the sidebands exhibit significant ellipticity that increases with
increasing sideband order, despite nearly linear excitation and driving fields.
We explain dynamical birefringence by generalizing the three-step model for
high order harmonic generation. The hole accumulates Berry phases due to
variation of its internal state as the quasi-momentum changes under the THz
field. Dynamical birefringence arises from quantum interference between
time-reversed pairs of electron-hole recollision pathways
Magnetic phase diagram of Fe1.1Te1-xSex: A comparative study with the stoichiometric superconducting FeTe1-xSex system
We report a comparative study of the series Fe1.1Te1-xSex and the
stoichiometric FeTe1-xSex to bring out the difference in their magnetic,
superconducting and electronic properties. The Fe1.1Te1-xSex series is found to
be magnetic and its microscopic properties are elucidated through Moessbauer
spectroscopy. The magnetic phase diagram of Fe1.1Te1-xSex is traced out and it
shows the emergence of spin-glass state when the antiferromagnetic state is
destabilized by the Se substitution. The isomer shift and quadrupolar splitting
obtained from the Moessbauer spectroscopy clearly brings out the electronic
differences in these two series.Comment: 6 pages, 9 figure
- …