25,774 research outputs found

    How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation

    Get PDF
    During the process of biological nitrogen fixation, the enzyme nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein; the Fe protein mediates the coupling of ATP hydrolysis to interprotein electron transfer, whereas the active site of the MoFe protein contains the polynuclear FeMo cofactor, a species composed of seven iron atoms, one molybdenum atom, nine sulfur atoms, an interstitial light atom, and one homocitrate molecule. This Perspective provides an overview of biological nitrogen fixation and introduces three contributions to this special feature that address central aspects of the mechanism and assembly of nitrogenase

    Nitrogenase: A nucleotide-dependent molecular switch

    Get PDF
    In the simplest terms, the biological nitrogen cycle is the reduction of atmospheric dinitrogen (N2) to ammonia with the subsequent reoxidation ammonia to dinitrogen (1). At the reduction level of ammonia, nitrogen incorporated into precursors for biological macromolecules such as proteins and nucleic acids. Reoxidation of ammonia to dinitrogen ("denitrification") by a variety of microbes (by way of nitrite and other oxidation levels of nitrogen) leads to the depletion of the "fixed," biologically usable, nitrogen pool. Besides the relatively small contribution from commercial ammonical fertilizer production, replenishing of the nitrogen pool falls mainly to a limited number of physiologically diverse microbes (e.g. eubacteria and archaebacteria; free-living and symbiotic; aerobic and anaerobic) that contain the nitrogenase enzyme system

    The MOSS camera on H-1NF

    Get PDF
    We have configured the modulated optical solid-state spectrometer, a recently developed high-resolution instrument for plasma Dopplerspectroscopy, as an imaging spectroscopiccamera. The camera features a wide field of view (∼10°), large aperture (40 mm), and high spectral resolution ν/Δν greater than 10 000. The camera installation on the H-1NF Heliac is described, together with the steps in the design process, including field widening. Calibration and characterization of the instrument function is discussed and the instrument performance is illustrated with some sample results of spatially resolved ion temperature measurements in H-1NF

    Quantum states prepared by realistic entanglement swapping

    Full text link
    Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.Comment: 44 pages, 7 figures, Published with minor changes in Phys. Rev.

    Combined SIRT3 and SIRT5 deletion is associated with inner retinal dysfunction in a mouse model of type 1 diabetes

    Get PDF
    Abstract Diabetic retinopathy (DR) is a major cause of blindness in working adults in the industrialized world. In addition to vision loss caused by macular edema and pathological angiogenesis, DR patients often exhibit neuronal dysfunction on electrophysiological testing, suggesting that there may be an independent neuronal phase of disease that precedes vascular disease. Given the tremendous metabolic requirements of the retina and photoreceptors in particular, we hypothesized that derangements in metabolic regulation may accelerate retinal dysfunction in diabetes. As such, we induced hyperglycemia with streptozotocin in mice with monoallelic Nampt deletion from rod photoreceptors, mice lacking SIRT3, and mice lacking SIRT5 and tested multiple components of retinal function with electroretinography. None of these mice exhibited accelerated retinal dysfunction after induction of hyperglycemia, consistent with normal-appearing retinal morphology in hyperglycemic Sirt3 −/− or Sirt5 −/− mice. However, mice lacking both SIRT3 and SIRT5 (Sirt3 −/− Sirt5 −/− mice) exhibited significant evidence of inner retinal dysfunction after induction of hyperglycemia compared to hyperglycemic littermate controls, although this dysfunction was not accompanied by gross morphological changes in the retina. These results suggest that SIRT3 and SIRT5 may be involved in regulating neuronal dysfunction in DR and provide a foundation for future studies investigating sirtuin-based therapies

    Persistence in the Voter model: continuum reaction-diffusion approach

    Full text link
    We investigate the persistence probability in the Voter model for dimensions d\geq 2. This is achieved by mapping the Voter model onto a continuum reaction-diffusion system. Using path integral methods, we compute the persistence probability r(q,t), where q is the number of ``opinions'' in the original Voter model. We find r(q,t)\sim exp[-f_2(q)(ln t)^2] in d=2; r(q,t)\sim exp[-f_d(q)t^{(d-2)/2}] for 2<d<4; r(q,t)\sim exp[-f_4(q)t/ln t] in d=4; and r(q,t)\sim exp[-f_d(q)t] for d>4. The results of our analysis are checked by Monte Carlo simulations.Comment: 10 pages, 3 figures, Latex, submitted to J. Phys. A (letters

    Mechanics and force transmission in soft composites of rods in elastic gels

    Get PDF
    We report detailed theoretical investigations of the micro-mechanics and bulk elastic properties of composites consisting of randomly distributed stiff fibers embedded in an elastic matrix in two and three dimensions. Recent experiments published in Physical Review Letters [102, 188303 (2009)] have suggested that the inclusion of stiff microtubules in a softer, nearly incompressible biopolymer matrix can lead to emergent compressibility. This can be understood in terms of the enhancement of the compressibility of the composite relative to its shear compliance as a result of the addition of stiff rod-like inclusions. We show that the Poisson's ratio ν\nu of such a composite evolves with increasing rod density towards a particular value, or {\em fixed point}, independent of the material properties of the matrix, so long as it has a finite initial compressibility. This fixed point is ν=1/4\nu=1/4 in three dimensions and ν=1/3\nu=1/3 in two dimensions. Our results suggest an important role for stiff filaments such as microtubules and stress fibers in cell mechanics. At the same time, our work has a wider elasticity context, with potential applications to composite elastic media with a wide separation of scales in stiffness of its constituents such as carbon nanotube-polymer composites, which have been shown to have highly tunable mechanics.Comment: 10 pages, 8 figure

    Nematic and Polar order in Active Filament Solutions

    Full text link
    Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining the organization of the filaments in homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially inhomogeneous structures.Comment: 4 pages. 3 figure
    • …
    corecore