5,427 research outputs found
Sputtering Holes with Ion Beamlets
Ion beamlets of predetermined configurations are formed by shaped apertures in the screen grid of an ion thruster having a double grid accelerator system. A plate is placed downstream from the screen grid holes and attached to the accelerator grid. When the ion thruster is operated holes having the configuration of the beamlets formed by the screen grid are sputtered through the plate at the accelerator grid
Systematic description and key to isolants from Atacama Desert, Chile
Isolation and identification of desert soil microorganism from Chil
Sulfur oxidizing capacity of California desert soils
Sulfur oxidation in desert soils due to bacterial activit
Preliminary design of graphite composite wing panels for commercial transport aircraft
Subjectively assessed practical and producible graphite/epoxy designs were subjected to a multilevel screening procedure which considered structural functions, efficiency, manufacturing and producibility, costs, maintainability, and inspectability. As each progressive screening level was reviewed, more definitive information on the structural efficiency (weight), manufacturing, and inspection procedures was established to support the design selection. The configuration features that enhance producibility of the final selected design can be used as a generic base for application to other wing panel designs. The selected panel design showed a weight saving of 25 percent over a conventional aluminum design meeting the same design requirements. The estimated cost reduction in manufacturing was 20 percent, based on 200 aircraft and projected 1985 automated composites manufacturing capability. The panel design background information developed will be used in the follow-on tasks to ensure that future panel development represents practical and producible design approaches to graphite/epoxy wing surface panels
Cadaveric Renal Transplantation in Diabetics in the 1980's: with Special Reference to Cyclosporine.
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
Isotropic Transverse XY Chain with Energy- and Magnetization Currents
The ground-state correlations are investigated for an isotropic transverse XY
chain which is constrained to carry either a current of magnetization J_M or a
current of energy J_E. We find that the effect of nonzero J_M on the
large-distance decay of correlations is twofold: i) oscillations are introduced
and ii) the amplitude of the power law decay increases with increasing current.
The effect of energy current is more complex. Generically, correlations in
current carrying states are found to decay faster than in the J_E=0 states,
contrary to expectations that correlations are increased by the presence of
currents. However, increasing the current, one reaches a special line where the
correlations become comparable to those of the J_E=0 states. On this line, the
symmetry of the ground state is enhanced and the transverse magnetization
vanishes. Further increase of the current destroys the extra symmetry but the
transverse magnetization remains at the high-symmetry, zero value.Comment: 7 pages, RevTex, 4 PostScript figure
Topological quenching of the tunnel splitting for a particle in a double-well potential on a planar loop
The motion of a particle along a one-dimensional closed curve in a plane is considered. The only restriction on the shape of the loop is that it must be invariant under a twofold rotation about an axis perpendicular to the plane of motion. Along the curve a symmetric double-well potential is present leading to a twofold degeneracy of the classical ground state. In quantum mechanics, this degeneracy is lifted: the energies of the ground state and the first excited state are separated from each other by a slight difference ¿E, the tunnel splitting. Although a magnetic field perpendicular to the plane of the loop does not influence the classical motion of the charged particle, the quantum-mechanical separation of levels turns out to be a function of its strength B. The dependence of ¿E on the field B is oscillatory: for specific discrete values Bn the splitting drops to zero, indicating a twofold degeneracy of the ground state. This result is obtained within the path-integral formulation of quantum mechanics; in particular, the semiclassical instanton method is used. The origin of the quenched splitting is intuitively obvious: it is due to the fact that the configuration space of the system is not simply connected, thus allowing for destructive interference of quantum-mechanical amplitudes. From an abstract point of view this phenomenon can be traced back to the existence of a topological term in the Lagrangian and a nonsimply connected configuration space. In principle, it should be possible to observe the splitting in appropriately fabricated mesoscopic rings consisting of normally conducting metal
- …
