270 research outputs found
Identification of delays and discontinuity points of unknown systems by using synchronization of chaos
In this paper we present an approach in which synchronization of chaos is
used to address identification problems. In particular, we are able to
identify: (i) the discontinuity points of systems described by piecewise
dynamical equations and (ii) the delays of systems described by delay
differential equations. Delays and discontinuities are widespread features of
the dynamics of both natural and manmade systems. The foremost goal of the
paper is to present a general and flexible methodology that can be used in a
broad variety of identification problems.Comment: 11 pages, 3 figure
A generic map has no absolutely continuous invariant probability measure
Let be a smooth compact manifold (maybe with boundary, maybe
disconnected) of any dimension . We consider the set of maps
which have no absolutely continuous (with respect to Lebesgue)
invariant probability measure. We show that this is a residual (dense
C^1$ topology.
In the course of the proof, we need a generalization of the usual Rokhlin
tower lemma to non-invariant measures. That result may be of independent
interest.Comment: 12 page
Transitions from phase-locked dynamics to chaos in a piecewise-linear map
Recent work has shown that torus formation in piecewise-smooth maps can take place through a special type of border-collision bifurcation in which a pair of complex conjugate multipliers for a stable cycle abruptly jump out of the unit circle. Transitions from an ergodic to a resonant torus take place via border-collision fold bifurcations. We examine the transition to chaos through torus destruction in such maps. Considering a piecewise-linear normal-form map we show that this transition, by virtue of the interplay of border-collision bifurcations with period-doubling and homoclinic bifurcations, can involve mechanisms that differ qualitatively from those described by Afraimovich and Shilnikov
Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation
Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the existence of an invariant closed curve, there may be transitions between an ergodic torus and a resonance torus, but the mechanism of creation for the resonance tongues is distinctly different from that observed in smooth maps. The transition from a stable focus point to a resonance torus may lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc-dc converter with two-level control as an example, we report the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation
A parametric study on the dynamic response of planar multibody systems with multiple clearance joints
A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a Ciência e a Tecnologia (FCT
On the contact detection for contact-impact analysis in multibody systems
One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT
- …
