138 research outputs found

    Perioperative fluid overload increases anastomosis thrombosis in the free TRAM flap used for breast reconstruction

    Get PDF
    To increase perfusion pressure with vasoactive drugs may be in conflict with the opinion of the reconstructive surgeon who maintains that the systemic administration of vasoactive agents causes vasoconstriction of the pedicle artery and the microvasculature. In free flap surgery, deliberate fluid therapy is used with a minimum of vasoactive drugs. This retrospective study was performed to analyse the perioperative fluid therapy, its effect on hemodynamic parameters and on the outcome of free flap surgery. One hundred and four patients were included in this retrospective study. The muscle sparing free transverse rectus abdominis myocutaneous flap was used for breast reconstruction. Perioperative hemodynamic data was used for this study. Twenty-seven patients had one or two complications requiring return to the operating room (OR). Two cases returned to the OR because of postoperative bleeding; in 11 patients, the anastomosis was revised. The reason for surgery in the latter group was venous stasis, due to thrombus formation at the venous anastomosis. The volume of fluid therapy was significantly higher in patients who returned to the OR due to thrombus formation at the anastomosis. Based on the results of this study, restricted intravenous fluid therapy or guided fluid therapy is recommended. Invasive monitoring such as central venous pressure and invasive arterial monitoring is recommended. Fluid loss should be replaced, and fluid overload should be avoided when the breast is reconstructed using free-tissue transfers

    Effect of intraoperative fluid optimisation on renal function in patients undergoing emergency abdominal surgery; a randomised controlled pilot study (ISRCTN 11799696) Fluid optimisation for emergency surgery

    Get PDF
    <b>Background:</b> Emergency abdominal surgery carries a high risk of postoperative morbidity and mortality. Goal directed therapy has been advocated to improve outcome in high-risk surgery. The aim of the present pilot study was to examine the effect of goal directed therapy using fluid alone on postoperative renal function and organ failure score in patients undergoing emergency abdominal surgery. <b>Methods:</b> This prospective randomised pilot study included patients over the age of 50 undergoing emergency abdominal surgery. In the intervention group pulse pressure variation measurements were used to guide fluid boluses of 6% Hydroxyethylstarch 130/0.4. The control group received standard care. Serum urea, creatinine and cystatin C levels were measured prior to and at the end of surgery and postoperatively on day 1, day 3 and day 5. <b>Results:</b> Thirty patients were recruited. One patient died prior to surgery and was excluded from the analysis. The intervention group received a median of 750ml of hydroxyethylstarch. The peak values of postoperative urea were 6.9 (2.7–31.8) vs. 6.4 (3.5–11.5)mmol/l (p=0.425), creatinine 100 (60–300) vs. 85 (65–150) μmol/l (p=0.085) and cystatin C 1.09 (0.66–4.94) vs. 1.01 (0.33–2.29)mg/dl (p=0.352) in the control and intervention group, respectively. <b>Conclusions:</b> In the present pilot study replacing the identified fluid deficit was not associated with a change in renal function. These results do not preclude that goal directed therapy using fluid alone may have an effect on renal function but they would suggest that the effect size of fluid optimisation alone on renal function is small

    Undergraduate medical textbooks do not provide adequate information on intravenous fluid therapy: a systematic survey and suggestions for improvement

    Get PDF
    <b>Background</b><p></p> Inappropriate prescribing of intravenous (IV) fluid, particularly 0.9% sodium chloride, causes post-operative complications. Fluid prescription is often left to junior medical staff and is frequently poorly managed. One reason for poor intravenous fluid prescribing practices could be inadequate coverage of this topic in the textbooks that are used.<p></p> <b>Methods</b><p></p> We formulated a comprehensive set of topics, related to important common clinical situations involving IV fluid therapy, (routine fluid replacement, fluid loss, fluids overload) to assess the adequacy of textbooks in common use. We assessed 29 medical textbooks widely available to students in the UK, scoring the presence of information provided by each book on each of the topics. The scores indicated how fully the topics were considered: not at all, partly, and adequately. No attempt was made to judge the quality of the information, because there is no consensus on these topics.<p></p> <b>Results</b><p></p> The maximum score that a book could achieve was 52. Three of the topics we chose were not considered by any of the books. Discounting these topics as “too esoteric”, the maximum possible score became 46. One textbook gained a score of 45, but the general score was poor (median 11, quartiles 4, 21). In particular, coverage of routine postoperative management was inadequate.<p></p> <b>Conclusions</b><p></p> Textbooks for undergraduates cover the topic of intravenous therapy badly, which may partly explain the poor knowledge and performance of junior doctors in this important field. Systematic revision of current textbooks might improve knowledge and practice by junior doctors. Careful definition of the remit and content of textbooks should be applied more widely to ensure quality and “fitness for purpose”, and avoid omission of vital knowledge

    Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial

    Get PDF
    Abstract\ud \ud \ud \ud Introduction\ud \ud Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital.\ud \ud \ud \ud Methods\ud \ud Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading.\ud \ud \ud \ud Results\ud \ud Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I.\ud \ud \ud \ud Conclusion\ud \ud Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital.\ud \ud \ud \ud Trial registration\ud \ud NCT00479011The authors thank Maria De Amorim (Paris, France) and Julia Fukushima (São Paulo, SP, Brazil) for help in data analysis, Dr Julia Wendon (London, UK) for reviewing the manuscript, and Dixtal (Sao Paulo, SP, Brazil) for providing the software for the automatic calculation of ?PP.The authors thank Maria De Amorim (Paris, France) and Julia Fukushima (São Paulo, SP, Brazil) for help in data analysis, Dr Julia Wendon (London, UK) for reviewing the manuscript, and Dixtal (Sao Paulo, SP, Brazil) for providing the software for the automatic calculation of ?PP

    Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial

    Get PDF
    Background: Intravenous (IV) fluid administration is an essential part of postoperative care. Some studies suggest that a restricted post-operative fluid regime reduces complications and postoperative hospital stay after surgery. We investigated the effects of postoperative fluid restriction in surgical patients undergoing major abdominal surgery. Methods: In a blinded randomized trial, 62 patients (ASA I-III) undergoing elective major abdominal surgical procedures in a university hospital were allocated either to a restricted (1.5 L/24 h) or a standard postoperative IV fluid regime (2.5 L/24 h). Primary endpoint was length of postoperative hospital stay (PHS). Secondary endpoints included postoperative complications and time to restore gastric functions. Results: After a 1-year inclusion period, an unplanned interim analysis was made because of many protocol violations due to patient deterioration. In the group with the restricted regime we found a significantly increased PHS (12.3 vs. 8.3 days; p = 0.049) and significantly more major complications: 12 in 30 (40%) vs. 5 in 32 (16%) patients (Absolute Risk Increase: 0.24 [95%CI: 0.03 to 0.46], i.e. a number needed to harm of 4 [95%CI: 2-33]). Therefore, the trial was stopped prematurely. Intention to treat analysis showed no differences in time to restore gastric functions between the groups. Conclusion: Restricted postoperative IV fluid management, as performed in this trial, in patients undergoing major abdominal surgery appears harmful as it is accompanied by an increased risk of major postoperative complications and a prolonged postoperative hospital stay

    Perioperative oxygen fraction – effect on surgical site infection and pulmonary complications after abdominal surgery: a randomized clinical trial. Rationale and design of the PROXI-Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high perioperative inspiratory oxygen fraction may reduce the risk of surgical site infections, as bacterial eradication by neutrophils depends on wound oxygen tension. Two trials have shown that a high perioperative inspiratory oxygen fraction (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80) significantly reduced risk of surgical site infections after elective colorectal surgery, but a third trial was stopped early because the frequency of surgical site infections was more than doubled in the group receiving Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80. It has not been settled if a high inspiratory oxygen fraction increases the risk of pulmonary complications, such as atelectasis, pneumonia and respiratory failure. The aim of our trial is to assess the potential benefits and harms of a high perioperative oxygen fraction in patients undergoing abdominal surgery.</p> <p>Methods and design</p> <p>The PROXI-Trial is a randomized, patient- and assessor blinded trial of perioperative supplemental oxygen in 1400 patients undergoing acute or elective laparotomy in 14 Danish hospitals. Patients are randomized to receive either 80% oxygen (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80) or 30% oxygen (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.30) during surgery and for the first 2 postoperative hours. The primary outcome is surgical site infection within 14 days. The secondary outcomes are: atelectasis, pneumonia, respiratory failure, re-operation, mortality, duration of postoperative hospitalization, and admission to intensive care unit. The sample size allows detection of a 33% relative risk reduction in the primary outcome with 80% power.</p> <p>Discussion</p> <p>This trial assesses benefits and harms of a high inspiratory oxygen fraction, and the trial may be generalizable to a general surgical population undergoing laparotomy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT00364741.</p

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p

    Perioperative fluid and volume management: physiological basis, tools and strategies

    Get PDF
    Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management
    corecore