59 research outputs found

    The random-cluster model on the complete graph

    Get PDF

    On large deviation properties of Erdos-Renyi random graphs

    Full text link
    We show that large deviation properties of Erd\"os-R\'enyi random graphs can be derived from the free energy of the qq-state Potts model of statistical mechanics. More precisely the Legendre transform of the Potts free energy with respect to lnq\ln q is related to the component generating function of the graph ensemble. This generalizes the well-known mapping between typical properties of random graphs and the q1q\to 1 limit of the Potts free energy. For exponentially rare graphs we explicitly calculate the number of components, the size of the giant component, the degree distributions inside and outside the giant component, and the distribution of small component sizes. We also perform numerical simulations which are in very good agreement with our analytical work. Finally we demonstrate how the same results can be derived by studying the evolution of random graphs under the insertion of new vertices and edges, without recourse to the thermodynamics of the Potts model.Comment: 38 pages, 9 figures, Latex2e, corrected and extended version including numerical simulation result

    The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma

    Full text link
    We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovasz local lemma in probabilistic combinatorics. We show that the conclusion of the Lovasz local lemma holds for dependency graph G and probabilities {p_x} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore, we show that the usual proof of the Lovasz local lemma -- which provides a sufficient condition for this to occur -- corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer and explicitly by Dobrushin. We also present some refinements and extensions of both arguments, including a generalization of the Lovasz local lemma that allows for "soft" dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity. To be published in J. Stat. Phy

    Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks

    Full text link

    Problems and results on judicious partitions

    No full text
    We present a few results and a larger number of questions concerning partitions of graphs or hypergraphs, where the objective is to maximize or minimize several quantities simultaneously. We consider a variety of extremal problems; many of these also have algorithmic counterparts. © 2002 Wiley Periodicals, Inc

    Covering the edges of a random graph by cliques

    No full text
    corecore