8,126 research outputs found
Threshold behavior of bosonic two-dimensional few-body systems
Bosonic two-dimensional self-bound clusters consisting of atoms
interacting through additive van der Waals potentials become unbound at a
critical mass m*(N); m*(N) has been predicted to be independent of the size of
the system. Furthermore, it has been predicted that the ground state energy
E(N) of the N-atom system varies exponentially as the atomic mass approaches
m*. This paper reports accurate numerical many-body calculations that allow
these predictions to be tested. We confirm the existence of a universal
critical mass m*, and show that the near-threshold behavior can only be
described properly if a previously neglected term is included. We comment on
the universality of the energy ratio E(N+1)/E(N) near threshold.Comment: 6 pages, 3 figure
Universal four-body states in heavy-light mixtures with positive scattering length
The number of four-body states known to behave universally is small. This
work adds a new class of four-body states to this relatively short list. We
predict the existence of a universal four-body bound state for heavy-light
mixtures consisting of three identical heavy fermions and a fourth
distinguishable lighter particle with mass ratio and
short-range interspecies interaction characterized by a positive s-wave
scattering length. The structural properties of these universal states are
discussed and finite-range effects are analyzed. The bound states can be
experimentally realized and probed utilizing ultracold atom mixtures.Comment: 5 page
Quarkonia Measurements with the Central Detectors of ALICE
A Large Ion Collider Experiment - ALICE will become operational with the
startup of the Large Hadron Collider - LHC at the end of 2007. One focus of the
physics program is the measurement of quarkonia in proton-proton and lead-lead
collisions. Quarkonia states will be measured in two kinematic regions and
channels: di-muonic decays will be measured in the forward region by the muon
arm, the central part of the detector will measure di-electronic decays. The
presented studies show the expected performance of the di-electron measurement
in proton-proton and central lead-lead collisions.Comment: 6 pages, 7 figures, Proceedings of the QM 2006 poster sessio
Dipolar Bose gases: Many-body versus mean-field description
We characterize zero-temperature dipolar Bose gases under external spherical
confinement as a function of the dipole strength using the essentially exact
many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies
are reproduced accurately within a mean-field framework if the variation of the
s-wave scattering length with the dipole strength is accounted for properly.
Our calculations suggest stability diagrams and collapse mechanisms of dipolar
Bose gases that differ significantly from those previously proposed in the
literature
Quantum fluctuation induced ordered phase in the Blume-Capel model
We consider the Blume-Capel model with the quantum tunneling between the
excited states. We find a magnetically ordered phase transition induced by
quantum fluctuation in a model. The model has no phase transition in the
corresponding classical case. Usually, quantum fluctuation breaks ordered phase
as in the case of the transverse field Ising model. However, in present case,
an ordered phase is induced by quantum fluctuation. Moreover, we find a phase
transition between a quantum paramagnetic phase and a classical diamagnetic
phase at zero temperature. We study the properties of the phase transition by
using a mean field approximation (MFA), and then, by a quantum Monte Carlo
method to confirm the result of the MFA.Comment: 7 pages, 6 figures, corrected some typo
Quasi-one-dimensional Bose gases with large scattering length
Bose gases confined in highly-elongated harmonic traps are investigated over
a wide range of interaction strengths using quantum Monte Carlo techniques. We
find that the properties of a Bose gas under tight transverse confinement are
well reproduced by a 1d model Hamiltonian with contact interactions. We point
out the existence of a unitary regime, where the properties of the quasi-1d
Bose gas become independent of the actual value of the 3d scattering length. In
this unitary regime, the energy of the system is well described by a hard rod
equation of state. We investigate the stability of quasi-1d Bose gases with
positive and negative 3d scattering length.Comment: 5 pages, 3 figure
The Trapped Polarized Fermi Gas at Unitarity
We consider population-imbalanced two-component Fermi gases under external
harmonic confinement interacting through short-range two-body potentials with
diverging s-wave scattering length. Using the fixed-node diffusion Monte Carlo
method, the energies of the "normal state" are determined as functions of the
population-imbalance and the number of particles. The energies of the trapped
system follow, to a good approximation, a universal curve even for fairly small
systems. A simple parameterization of the universal curve is presented and
related to the equation of state of the bulk system.Comment: 4 pages, 2 tables, 2 figure
Quantum Monte Carlo study of quasi-one-dimensional Bose gases
We study the behavior of quasi-one-dimensional (quasi-1d) Bose gases by Monte
Carlo techniques, i.e., by the variational Monte Carlo, the diffusion Monte
Carlo, and the fixed-node diffusion Monte Carlo technique. Our calculations
confirm and extend our results of an earlier study [Astrakharchik et al.,
cond-mat/0308585]. We find that a quasi-1d Bose gas i) is well described by a
1d model Hamiltonian with contact interactions and renormalized coupling
constant; ii) reaches the Tonks-Girardeau regime for a critical value of the 3d
scattering length a_3d; iii) enters a unitary regime for |a_3d| -> infinity,
where the properties of the gas are independent of a_3d and are similar to
those of a 1d gas of hard-rods; and iv) becomes unstable against cluster
formation for a critical value of the 1d gas parameter. The accuracy and
implications of our results are discussed in detail.Comment: 15 pages, 9 figure
System Size Dependence of Particle Production at the SPS
Recent results on the system size dependence of net-baryon and hyperon
production as measured at the CERN SPS are discussed. The observed Npart
dependences of yields, but also of dynamical properties, such as average
transverse momenta, can be described in the context of the core corona
approach. Other observables, such as antiproton yields and net-protons at
forward rapidities, do not follow the predictions of this model. Possible
implications for a search for a critical point in the QCD phase diagram are
discussed. Event-by-event fluctuations of the relative core to corona source
contributions might influence fluctuation observables (e.g. multiplicity
fluctuations). The magnitude of this effect is investigated.Comment: 10 pages, 4 figurs. Proceedings of the 6th International Workshop on
Critical Point and Onset of Deconfinement in Dubna, Aug. 201
Optimal, reliable estimation of quantum states
Accurately inferring the state of a quantum device from the results of
measurements is a crucial task in building quantum information processing
hardware. The predominant state estimation procedure, maximum likelihood
estimation (MLE), generally reports an estimate with zero eigenvalues. These
cannot be justified. Furthermore, the MLE estimate is incompatible with error
bars, so conclusions drawn from it are suspect. I propose an alternative
procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues,
its eigenvalues provide a bound on their own uncertainties, and it is the most
accurate procedure possible. I show how to implement BME numerically, and how
to obtain natural error bars that are compatible with the estimate. Finally, I
briefly discuss the differences between Bayesian and frequentist estimation
techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically
welcomed
- …
